In molecular probes, the binding affinity and thus the
selectivity between an anion and the host is attributed to
hydrogen bonding and/or electrostatic interactions and is also
significantly affected by the topology of the ligating sites,6 viz.,
probes 2 and 3, which enable naked eye and dual channel
(absorption and fluorescence) detection of F- and AcO- ions,
respectively. Significantly, in these probes, the appearance of
absorption and emission maxima due to free probe (λabs 405 nm,
ε ) 6600 M-1 cm-1; λem 475 nm; ꢀ ) 0.11) and their complexes
with the anion (λabs ) 480 nm, ε ) 6000 M-1 cm-1; λem ) 580
nm, ꢀ ) 0.38) at different wavelengths has enabled elaboration
of ratiometric approach (Figure 1). The probes 2 and 3 constitute
the first examples where N-arylimidazoilium9 salts have found
application as anion sensors.
1-(Chloroacetylamido)-anthracene-9,10-dione (1)13 on heat-
ing with 1-benzylimidazole and 1-dodecylimidazole in DMSO
for 4-5 h gave respective chemosensors 2 (80%, mp > 300
°C, M+ m/z 404) and 3 (78%, mp > 300 °C, M+ m/z 482 for
cation); for spectral data see Figures S1-S8 in Supporting
Information. Evidently, the initially formed imidazolium salts
4a and 4b undergo intramolecular condensation at the an-
thraquinone carbonyl group to form respective compounds 2
and 3. The appearance of upfield 1H doublet at δ 6.68 in 2 and
at δ 6.58 in 3 demonstrates that the Hx proton (Scheme 1) faces
Figure 1. (A) UV-vis spectra of 2 (50 µM) in CH3CN-DMSO (20:
1) and 2 + F- (100 µM). (B) Fluorescence spectra of 2 (10 µM) and
2 + F- (20 µM). The inset shows the color changes on addition of
fluoride ions under (A) visible light and (B) irradiation of UV light.
See Figure S10 in Supporting Information for 3.
that of the anion (size and spherical, trigonal, or tetrahedral
geometries). In contrast to ammonium and guanidinium7 based
anion probes, quaternary ammonium,8,12c imidazolium,9 ben-
zimidazolium,10 pyridinium,11 etc. salts based anion probes
remain unaffected by the pH of the medium and so can find
applicability under physiological conditions.
Scheme 1. Synthesis of Chemosensor 2 and 3
Our work aims12 at the design and synthesis of molecular probes
with colorimetric and fluorimetric assays to selectively detect the
presence of a target anion over the wide range of other interfering
anions. Here, we have developed new N-aryl imidazolium based
(4) (a) Yu, X.; Lin, H.; Cai, Z.; Lin, H. Tetrahedron Lett. 2007, 48,
8615–8618. (b) Lin, Z.; Ou, S.; Duan, C.; Zhang, B.; Bai, Z. Chem.
Commun. 2006, 624–626.
the ring currents of imidazolium ring. The proximity of this
CH with imidazolium ring has been ascertained by X-ray crystal
structure of PF6 salt of 2 (Figure S9, Supporting Information).
(5) (a) Xu, Z.; Qian, X.; Cui, J. Org. Lett. 2005, 7, 3029–3032. (b) Xu,
K.; Tang, B.; Huang, H.; Yang, G.; Chen, Z.; Li, P.; An, L. Chem. Commun
2005, 5974–5976.
(6) (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–
516. (b) Bowman-James, K. Acc. Chem. Res. 2005, 38, 671–678, and
references therein.
(7) (a) Schmuck, C. Coord. Chem. ReV. 2006, 250, 3053–3067. (b)
Llinares, J.; Powell, D.; Bowman-James, K. Coord. Chem. ReV. 2003, 240,
57–75. (c) Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D.
J. Chem. Soc., Perkin Trans. 1 2002, 841–864. (d) Schmuck, C.; Bickert,
V. J. Org. Chem. 2007, 72, 6832–6839. (e) Raker, J.; Glass, T. E. J. Org.
Chem. 2002, 67, 6113–6116.
(8) (a) Worm, K.; Schmidtchen, F. P. Angew. Chem., Int. Ed. 1995, 34,
65–66. (b) Hossain, M.; Kang, S. K.; Powell, D.; Bowman-James, K. Inorg.
Chem. 2003, 42, 1397–1399
.
(9) (a) Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. ReV.
2006, 35, 355–360, and references therein. (b) Khatri, V. K.; Upreti, S.;
Pandey, P. S. Org. Lett. 2006, 8, 1755–1758. (c) Xu, Z.; Kim, S.; Lee,
K. H.; Yoon, J. Tetrahedron Lett. 2007, 48, 3797–3800. (d) Yoon, J.; Kim,
S. K.; Singh, N. J.; Lee, J. W.; Yang, Y. J.; Chellappan, K.; Kim, K. S. J.
Org. Chem. 2004, 69, 581–583. (e) Lee, H. N.; Singh, N. J.; Kim, S. K.;
Kwon, J. Y.; Kim, Y. Y.; Kim, K. S.; Yoon, J. Tetrahedron Lett. 2007, 48,
169–172. (f) Singh, N. J.; Jun, E. J.; Chellappan, K.; Thangadurai, D.;
Chandran, R. P.; Hwang, I.; Yoon, J.; Kim, K. S. Org. Lett. 2007, 9, 485–
488.
Figure 2. (a) Effect of incremental addition of fluoride ions on the
UV-vis spectrum of 2 (50 µM) in CH3CN-DMSO (20:1). (b)
Effect of incremental addition of acetate ions on the UV-vis
spectrum of 3 (50 µM) in CHCl3-MeOH(1:1).
(10) (a) Wong, W. H.; Vicker, M.; Cowley, A. R.; Paul, R. L.; Beer,
P. D. Org. Biomol. Chem. 2005, 3, 4201–4208. (b) Joo, T. Y.; Singh, N.;
Lee, G. W.; Jang, D. O. Tetrahedron Lett. 2007, 48, 8846–8850.
(11) (a) Kumaresh, G.; Masanta, G.; Chattopadhyay, A. P. Tetrahedron
Lett. 2007, 48, 6129–6132. (b) Dickson, S. J.; Wallace, E. V. B.; Swinburne,
A. N.; Paterson, M. J.; Lloyd, G. O.; Beeby, A.; Belcher, W. J.; Steed,
J. W. New J. Chem 2008, 32, 786–789. (c) Filby, M. H.; Dickson, S. J.;
Zaccheroni, N.; Prodi, L.; Bonacchi, S.; Montalti, M.; Paterson, M. J.;
Humphries, T. D.; Chiorboli, C.; Steed, J. W. J. Am. Chem. Soc. 2008,
130, 4105–4113, and references therein.
The chemosensor 2 (50 µM, CH3CN-DMSO (20:1)) ex-
hibited absorption bands at λmax 308 nm (ε 8200) and 405 nm
(12) (a) Kaur, N.; Kumar, S. Chem. Commun. 2007, 3069–3070. (b)
Kaur, S.; Kumar, S. Chem. Commun. 2002, 2840–2841. (c) Luxami, V.;
Sharma, N.; Kumar, S. Tetrahedron Lett. 2008, 49, 4265–4268. (d) Luxami,
V.; Kumar, S. Tetrahedron Lett. 2007, 48, 3083–3087. (e) Kaur, N.; Kumar,
S. Dalton Trans. 2006, 3766–3771.
5550
Org. Lett., Vol. 10, No. 24, 2008