SCHEME 1. Retrosynthetic Plan for Azumamide E
Total Synthesis of Azumamide E and Sugar
Amino Acid-Containing Analogue
Srivari Chandrasekhar,*,† Chennamaneni Lohitha Rao,†
Mallikanti Seenaiah,† Police Naresh,‡ Bharatam Jagadeesh,‡
Dharani Manjeera,§ Arpita Sarkar,§ and Manika Pal Bhadra§
Organic DiVision-I, Centre for Nuclear Magnetic Resonance,
and Centre for Chemical Biology, Indian Institute of
Chemical Technology, Hyderabad, India 500 607
ReceiVed June 28, 2008
deacetylase) inhibitors3 incorporating four nonribosomal amino
acid residues; three of them are R-amino acids (D-series), while
the fourth one is a unique ꢀ-amino acid [(Z)-(2S,3R)-3-amino-
2-methyl-5-nonenedioic acid-9-amide (Amnaa)] in azumamide
A, B, and D and a free acid in C and E.
The azumamide E, in particular, has shown histone deacety-
lase (HDAC) inhibition at the lowest concentration among all
other congeners of azumamides.4,5 We have been fascinated both
by the structural elegance as it incorporates a ꢀ-amino acid
skeleton and by the novel biological profile. Recently, we have
synthesized novel ꢀ-amino acids as a part of our studies devoted
to the understanding of the folding patterns of short peptide
oligomers.6 We embarked on the total synthesis of azumamide
E (Scheme 1), while also being keen to incorporate one of our
own ꢀ-amino acids (ꢀ-SAA)6a into the structural motif of
azumamide, by replacing the D-alanine part. This novel ana-
logue, azumamide E-SAA hybrid, is expected to show a better
An efficient and practical total synthesis of marine cyclic
tetrapeptide, natural product azumamide E (1) is achieved
via high-yielding reactions. The strategy also allowed us to
synthesize the azumamide E-SAA (sugar amino acid)
analogue (2), whose solution-phase NMR and biological
activity studies were also carried out.
The major concern in cancer chemotherapy has been the drug
resistance. There have been several new chemical entities
brought into clinic with various structural diversities and
complexities to overcome this inherent drawback. More recently,
the marine invertebrates have been providing some of the most
interesting and complex secondary metabolites with diverse
affinities toward biological targets. Among these, the most
fascinating have been the cyclic peptides1 with impressive
antiproliferative properties. Fusetani et al. have isolated azuma-
mides A-E from the marine sponge Mycale izuensis.2 These
natural products belong to a rare class of HDAC (histone
(3) (a) Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med. Chem. 2003, 46,
5097–5116. (b) Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. J. Med. Chem.
2008, 51, 1505–1529. (c) George, A. Y.; Cecil, A. R. L.; Mo, A. H. K.; Wen,
S.; Rogers, H.; Habens, F.; Maeda, S.; Yoshida, M.; Packham, G.; Ganesan, A.
J. Med. Chem. 2007, 50, 5720–5726. (d) Greshock, T. J.; Johns, D. M.; Noguchi,
Y.; Williams, R. M. Org. Lett. 2008, 10, 613–616. (e) George, A. Y.; Habens,
F.; Brimmel, M.; Packham, G.; Ganesan, A. J. Am. Chem. Soc. 2004, 126, 1030–
1031. (f) Takizawa, T.; Watanabe, K.; Narita, K.; Oguchi, T.; Abe, H.; Katoh,
T. Chem. Commun. 2008, 1677–1679.
(4) Nakao, Y.; Narazaki, G.; Hoshino, T.; Maeda, S.; Yoshida, M.; Maejima,
H.; Yamashita, J. K. Bioorg. Med. Chem. Lett. 2008, 18, 2982–2984.
(5) Synthesis: (a) Izzo, I.; Maulucci, N.; Bifulco, G.; De Riccardis, F. Angew.
Chem., Int. Ed. 2006, 45, 7557–7560. (b) Wen, S.; Carey, K. L.; Nakao, Y.;
Fusetani, N.; Packham, G.; Ganesan, A. Org. Lett. 2007, 9, 1105–1108. (c)
Maulucci, N.; Chini, M. G.; Di Micco, S.; Izzo, I.; Cafaro, E.; Russo, A.;
Gallinari, P.; Paolini, C.; Nardi, M. C.; Casapullo, A.; Riccio, R.; Bifulco, G.;
De Riccardis, F. J. Am. Chem. Soc. 2007, 129, 3007–3012.
† Organic Divison-1.
‡ Centre for Nuclear Magnetic Resonance.
§ Centre for Chemical Biology.
(1) (a) Xie, W.; Zou, B.; Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775–2777. (b)
Meinke, P. T.; Colletti, S. L.; Doss, G.; Myers, R. W.; Gurnett, A. M.; Dulski,
P. M.; Darkin-Rattray, S. J.; Allocco, J. J.; Galuska, S.; Schmatz, D. M.; Wyvratt,
M. J.; Fisher, M. H. J. Med. Chem. 2000, 43, 4919–4922. (c) Singh, S. B.; Zink,
D. L.; Liesch, J. M.; Mosley, R. T.; Dombrowski, A. W.; Bills, G. F.; Darkin-
Rattray, S. J.; Schmatz, D. M.; Goetz, M. A. J. Org. Chem. 2002, 67, 815–825.
(2) Nakao, Y.; Yoshida, S.; Matsunaga, S.; Shindoh, N.; Terada, Y.; Nagai,
K.; Yamashita, J. K.; Ganesan, A.; van Soest, R. W. M.; Fusetani, N.
Angew.Chem., Int. Ed. 2006, 45, 7553–7557.
(6) (a) Chandrasekhar, S.; Reddy, M. S.; Jagadeesh, B.; Prabhakar, A.; Rao,
M. H. V. R.; Jagannadh, B. J. Am. Chem. Soc. 2004, 126, 13586–13587. (b)
Chandrasekhar, S.; Reddy, M. S.; Babu, B. N.; Jagadeesh, B.; Prabhakar, A.;
Jagannadh, B. J. Am. Chem. Soc. 2005, 127, 9664–9665. (c) Jagannadh, B.;
Reddy, M. S.; Rao, C. L.; Prabhakar, A.; Jagadeesh, B.; Chandrasekhar, S. Chem.
Commun. 2006, 4847–4849.
10.1021/jo8020264 CCC: $40.75
Published on Web 11/24/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 401–404 401