Table 1 Photophysical properties of emissive complexesa
R1
lex/nm
lem/nm
tH/ms
tD/ms
q
Tb.9b
Tb.12b
Eu.9b
Eu.10b
Eu.12b
Yb.10b
Yb.11c
a
Ph
250
280
250
280
280
337
337
545
545
617
617
617
980
980
1750
1740
550
640
500
2480
2150
2070
2340
1430
0.5
0.2
1.3
1.1
1.3
1.0
0.6
Indolyl
Ph
Np
Indolyl
Np
Pyrenyl
0.81
2.24
6.13
9.91
The terbium and europium complexes of the pyrenyl-bearing ligand were non-emissive owing to the mismatch between triplet and emissive states,
while the terbium complex with the naphthyl-bearing ligand exhibits weak emission as the result of efficient back energy transfer. The emission of
b
c
the Yb phenyl system was not studied in the absence of a suitable excitation source. Lifetimes are ꢂ10%. Measured in H2O–D2O. Measured in
CH3OH–CD3OD.
sensitised emission was observed for Eu.9, Eu.10 and Eu.12,
though not for Eu.11. The pyrene chromophore did, however,
4 A. E. Merbach and E. Toth, in Comprehensive Coordination
Chemistry, ed. M. D. Ward, Elsevier, 2nd edn, 2004, ch. 19, vol. 9.
5 R. J. Aarons, J. Notta, M. M. Meloni, J. Feng, S. Allan, N.
Spencer, R. A. Kauppinen, J. S. Snaith and S. Faulkner, Chem.
Commun., 2006, 909–911; D. Parker, in ‘Imaging and targeting, ’ in
Comprehensive Supramolecular Chemistry, ed. D. N. Reinhoudt
and J.-M. Lehn, Pergamon, Oxford, 1996, ch. 17, vol. 10, pp.
487–536.
6 S. Benedetto, R. Pulito, S. G. Crich, G. Tarone, S. Aime, L.
Silengo and J. Hamm, Magn. Reson. Med., 2006, 56, 711–716.
7 A. Beeby, S. W. Botchway, I. M. Clarkson, S. Faulkner, A. W.
Parker, D. Parker and J. A. G. Williams, J. Photochem. Photobiol.,
B, 2000, 57, 83; L. Charbonniere, R. Ziessel, M. Guardigli, A.
Roda, N. Sabbatini and M. Cesario, J. Am. Chem. Soc., 2001, 123,
2436.
8 A. Beeby, R. S. Dickins, S. Faulkner, D. Parker and J. A. G.
Williams, Chem. Commun., 1997, 1401–1402; S. Faulkner, A.
Beeby, D. Parker and J. A. G. Williams, J. Fluoresc., 1999,
45–49; A. Dadabhoy, S. Faulkner and P. G. Sammes, J. Chem.
Soc., Perkin Trans. 2, 2000, 2359; S. J. A. Pope, B. J. Coe, S.
Faulkner, E. V. Bichenkova, X. Yu and K. T. Douglas, J. Am.
Chem. Soc., 2004, 126, 9490–9491; K. Senechal-David, S. J. A.
Pope, S. Quinn, S. Faulkner and T. Gunnlaugsson, Inorg. Chem.,
2006, 45, 10040–10042; S. J. A. Pope, B. J. Coe, S. Faulkner and R.
H. Laye, Dalton Trans., 2005, 1482–1490.
9 S. I. Klink, H. Keizer and F. C. J. M. van Veggel, Angew. Chem.,
Int. Ed., 2000, 39, 4319; A. Beeby, L. M. Bushby, D. Maffeo and J.
A. G. Williams, J. Chem. Soc., Perkin Trans. 2, 2000, 1281; J.-C. G.
Bunzli, S. Comby, A. S. Chauvin and C. Vandevyer, J. Rare
Earths, 2007, 25, 257–274; T. Gunnlaugsson and J. P. Leonard,
Chem. Commun., 2005, 3114–3131.
2
sensitise emission from the ytterbium F5/2 state at 980 nm
(B10 200 cmꢀ1).
The luminescence lifetimes of the emissive complexes were
used to probe the local environment and the solvation at the
metal centre. The number of inner sphere solvent molecules,
q, can be calculated using the equation
q = A(1/tH ꢀ 1/tD ꢀ B)
where A and B are constants for a given metal ion and solvent,
and tH and tD are the observed luminescence lifetimes in
protiated and deuteriated media respectively.17y Table 1 also
shows these calculated values for q, which illustrate that the metal
binding pocket changes little across the series. The lower values of
q obtained for Tb.9 and Tb.12 relative to their Eu analogues may
reflect the structure break commonly observed around
gadolinium as a consequence of the lanthanide contraction.
This study on a range of related complexes suggest that all
adopt very similar structures in solution, in which a single
isomer predominates around the metal centre.
The approach described above illustrates how luminescent
complexes can be prepared from simple building blocks by using
a multi-component synthesis approach. We are currently investi-
gating how this approach can be combined with peptide vectors
and other substrates to allow the use of a flexible molecular toolkit
in ‘‘smart’’ bioassay and imaging applications.
10 T. Koullourou, L. S. Natrajan, H. Bhavsar, S. J. A. Pope, J. Feng,
J. Narvainen, R. Shaw, E. Scales, R. Kauppinen, A. M. Kenwright
and S. Faulkner, J. Am. Chem. Soc., 2008, 130, 2178–2179.
11 A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39,
3168–3210.
Notes and references
12 P. A. Tempest, Curr. Opin. Drug. Discovery Delivery, 2005, 8,
776–788.
13 L. Banfi, G. Guanti, R. Riva and A. Basso, Curr. Opin. Drug
Discovery Delivery, 2007, 10, 704–714.
14 S. Aime, M. Botta and G. Ermondi, Inorg. Chem., 1992, 31,
4291–4299.
y For Tb3+ in water, A = 5 ms, B = 0.06 msꢀ1; for Eu3+ in water,
A = 1.2 ms, B = (0.25 + 0.075x) msꢀ1, where x is the number of
exchangeable amide N–H oscillators; for Yb3+ in water, A = 1 ms,
B = 0.1 msꢀ1; for Yb3+ in methanol, A = 2 ms, B = 0.05 msꢀ1
.
15 S. Aime, M. Botta, M. Fasano, M. P. M. Marques, C. F. G. C.
Geraldes, D. Pubanz and A. E. Merbach, Inorg. Chem., 1997, 36,
2059–2068; D. Parker, R. S. Dickins, H. Puschmann, C. Crossland
and J. A. K. Howard, Chem. Rev., 2002, 102, 1977–2010.
16 A. Beeby, S. Faulkner, D. Parker and J. A. G. Williams, J. Chem.
Soc., Perkin Trans. 2, 2001, 1268–1273; M. H. V. Werts, R. H.
Woudenberge, P. G. Emmerink, R. van Gassel, J. W. Hofstraat
and J. W. Verhoeven, Angew. Chem., Int. Ed., 2000, 39, 4542.
17 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker,
A. S. de Sousa and J. A. G. Williams, J. Chem. Soc., Perkin Trans.
2, 1999, 493–503.
1 P. Caravan, Chem. Soc. Rev., 2006, 35, 512–523; P. Caravan, J. J.
Ellison and T. J. McMurry, Chem. Rev., 1999, 99, 2293–2352; S.
Faulkner and J. L. Matthews, in Comprehensive Coordination
Chemistry, ed. M. D. Ward, Elsevier, 2nd edn, 2004, ch. 21, vol. 9.
2 S. Faulkner, B. P. Burton-Pye and S. J. A. Pope, Appl. Spectrosc.
Rev., 2005, 40, 1; P. G. Sammes and G. Yahogliou, Nat. Prod.
Rep., 1996, 1; I. A. Hemilla, Applications of Fluorescence in
Immunoassays, Wiley Interscience, New York, 1991.
3 D. Parker, R. S. Dickins, H. Puschman, C. Crossland and J. A. K.
Howard, Chem. Rev., 2002, 102, 1977–2010.
ꢁc
This journal is The Royal Society of Chemistry 2008
5214 | Chem. Commun., 2008, 5212–5214