7 V. K. Praveen, S. J. George, R. Varghese, C. Vijayakumar and
A. Ajayaghosh, J. Am. Chem. Soc., 2006, 128, 7542–7550.
8 S. Yagai, T. Nakajima, K. Kishikawa, S. Kohmoto, T. Karatsu and
A. Kitamura, J. Am. Chem. Soc., 2005, 127, 11134–11139.
9 B. K. An, D. S. Lee, J. S. Lee, Y. S. Park, H. S. Song and S. Y. Park,
J. Am. Chem. Soc., 2004, 126, 10232–10233.
10 J. Mamiya, K. Kanie, T. Hiyama, T. Ikeda and T. Kato, Chem.
Commun., 2002, 1870–1871.
11 T. Brotin, R. Utermohlen, F. Fages, H. Bouaslaurent and
J. P. Desvergne, J. Chem. Soc., Chem. Commun., 1991, 416–418.
12 J. H. van Esch and B. L. Feringa, Angew. Chem., Int. Ed., 2000, 39,
2263–2266.
13 S. Shinkai and K. Murata, J. Mater. Chem., 1998, 8, 485–495.
14 M. Zinic, F. Vogtle and F. Fages, Top. Curr. Chem., 2005, 256, 39–76.
15 Y. Lin and R. G. Weiss, Macromolecules, 1987, 20, 414–417; Y. Lin,
B. Kachar and R. G. Weiss, J. Am. Chem. Soc., 1989, 111, 5542–5551.
16 J. H. Jung, S. Shinkai and T. Shimizu, Chem. Mater., 2003, 15, 2141–
2145.
17 J. X. Peng, K. Q. Liu, J. Liu, Q. H. Zhang, X. Feng and Y. Fang,
Langmuir, 2008, 24, 2992–3000; P. Chen, R. Lu, P. C. Xue,
T. H. Xu, G. J. Chen and Y. Y. Zhao, Langmuir, 2009, 25, 8395–8399.
18 J. H. Kim, M. Seo, Y. J. Kim and S. Y. Kim, Langmuir, 2009, 25,
1761–1766.
Conclusions
In summary, a series of new symmetric dicholesterol-linked
azobenzene gelators have been synthesized. The difference in the
spacer length between cholesteryl and azobenzene units can
produce a dramatic change in the gelation behavior. DCAZO0
can gelate polar cyclic solvents such as cyclopentanone, cyclo-
hexanone, pyridine and 1,4-dioxane. DCAZO2 can only gelate
cyclopentanone, cyclohexanone and DMF, while DCAZO6 can
not gelate any solvent tested herein. And the minimum gelation
concentration of all tested solvents is obtained by DCAZO2 in
cyclopentanone and cyclohexanone (1% w/v). UV-vis absorption
and CD spectroscopy reveals that the gel–sol transition through
breaking van der Waals interactions occurs after photo-
isomerization of azobenzene groups. Considering there is suffi-
cient free volume in the gel state for the photoisomerization of
the azobenzene groups, the change in solvent affinity resulted
from the change in polarity after photoisomerization, triggers the
breaking and reforming of the gel system. Based on the results of
SEM, TEM and XRD studies, it is found that the gelator
molecules self-assemble into one-dimensional fibers with diam-
eters of 50–100 nm in an anticlockwise direction, which further
crossed-linked to form three-dimensional networks. These
results afford useful information for the development of new
versatile low molecular mass gelators and soft matter.
19 Q. Chen, D. Q. Zhang, G. X. Zhang and D. B. Zhu, Langmuir, 2009,
25, 11436–11441.
20 J. B. Beck and S. J. Rowan, J. Am. Chem. Soc., 2003, 125, 13922–
13923.
21 H. Y. Jiang, S. Kelch and A. Lendlein, Adv. Mater., 2006, 18, 1471–
1475.
22 S. Xie, A. Natansohn and P. Rochon, Chem. Mater., 1993, 5, 403–
411; C. J. Barrett, J. I. Mamiya, K. G. Yager and T. Ikeda, Soft
Matter, 2007, 3, 1249–1261.
23 K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata,
T. Komori, F. Ohseto, K. Ueda and S. Shinkai, J. Am. Chem. Soc.,
1994, 116, 6664–6676.
Acknowledgements
24 Y. F. Zhou, M. Xu, T. Yi, S. Z. Xiao, Z. G. Zhou, F. Y. Li and
C. H. Huang, Langmuir, 2007, 23, 202–208; S. van der Laan,
B. L. Feringa, R. M. Kellogg and J. van Esch, Langmuir, 2002, 18,
7136–7140; M. Moriyama, N. Mizoshita, T. Yokota, K. Kishimoto
and T. Kato, Adv. Mater., 2003, 15, 1335–1338; T. Ishi-i and
S. Shinkai, Top. Curr. Chem., 2005, 258, 119–160; Y. Ji,
G. C. Kuang, X. R. Jia, E. Q. Chen, B. B. Wang, W. S. Li, Y. Wei
and J. Lei, Chem. Commun., 2007, 4233–4235; N. Koumura,
M. Kudo and N. Tamaoki, Langmuir, 2004, 20, 9897–9900.
25 P. Deindorfer, R. Davis and R. Zentel, Soft Matter, 2007, 3, 1308–
1311.
This work is supported by National Natural Science Foundation
of China (No. 50703038, 50773075 and 21074123) and the Chinese
Academy of Sciences (kjcx3.sywH02 and kjcx2-yw-m11).
References
1 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418–2421.
2 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133–3159;
D. J. Abdallah and R. G. Weiss, Adv. Mater., 2000, 12, 1237–1247;
N. M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821–
836; P. Dastidar, Chem. Soc. Rev., 2008, 37, 2699–2715; P. Terech,
R. G. Weiss, ed. Molecular Gels: Materials with Self-Assembled
Fibrillar Networks; Springer: Dordrecht, The Netherlands, 2006.
3 W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki,
K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, J. Phys. Chem.
B, 2001, 105, 12809–12815.
26 X. W. Yu, Y. H. Luo, Y. Deng, Q. Yan, G. Zou and Q. J. Zhang, Eur.
Polym. J., 2008, 44, 881–888.
27 A. Takahashi, M. Sakai and T. Kato, Polym. J., 1980, 12, 335–341.
28 M. Suzuki, T. Nigawara, M. Yumoto, M. Kimura, H. Shirai and
K. Hanabusa, Org. Biomol. Chem., 2003, 1, 4124–4131.
29 T. Sasaki, T. Ikeda and K. Ichimura, Macromolecules, 1993, 26, 151–
154.
30 S. Yagai, T. Nakajima, T. Karatsu, K. Saitow and A. Kitamura,
J. Am. Chem. Soc., 2004, 126, 11500–11508.
4 K. Sugiyasu, N. Fujita and S. Shinkai, Angew. Chem., Int. Ed., 2004,
43, 1229–1233.
31 Y. Matsuzawa and N. Tamaoki, J. Phys. Chem. B, 2010, 114, 1586–
1590.
5 K. J. C. van Bommel, A. Friggeri and S. Shinkai, Angew. Chem., Int.
Ed., 2003, 42, 980–999.
32 P. Xue, R. Lu, G. Chen, Y. Zhang, H. Nomoto, M. Takafuji and
H. Ihara, Chem.–Eur. J., 2007, 13, 8231–8239.
6 A. Friggeri, B. L. Feringa and J. van Esch, J. Controlled Release,
2004, 97, 241–248.
This journal is ª The Royal Society of Chemistry 2011
Soft Matter, 2011, 7, 716–721 | 721