ORGANIC
LETTERS
2009
Vol. 11, No. 1
121-124
Au-Catalyzed Cyclization of
Monopropargylic Triols: An Expedient
Synthesis of Monounsaturated
Spiroketals
Aaron Aponick,* Chuan-Ying Li, and Jean A. Palmes
Department of Chemistry, UniVersity of Florida, GainesVille, Florida 32611
aponick@chem.ufl.edu
Received October 28, 2008
ABSTRACT
The gold-catalyzed cyclization of monopropargylic triols to form olefin-containing spiroketals is reported. The reactions are rapid and high
yielding when 2 mol % of the catalyst generated in situ from Au[P(t-Bu)2(o-biphenyl)]Cl and AgOTf is employed in THF at 0 °C. A range of
differentially substituted triols leading to substituted 5- and 6-membered ring spiroketals were prepared and function well in the reaction.
Spiroketals are a common motif found in many structurally
interesting and biologically significant natural products.1
In addition to the fully saturated analogues, a number of
families of natural products with olefin-containing spiroket-
als have been reported. Select examples include okadaic
acid,2 avermectin,3 aigialospirol,4 and the spirastrel-
lolides.5 These monounsaturated spiroketals with the
general structure 3 have classically been prepared by the
dehydration of R,ꢀ-unsaturated keto diols or cis-olefin-
containing hemiacetals with a pendant-free alcohol.1,6 As
part of our program aimed at devising new gold-catalyzed
dehydrative transformations of unsaturated alcohols, we
began to explore the formation of monounsaturated spiroket-
als 3 from monopropargylic triols 1.
Homogeneous catalysis using gold salts has emerged as a
powerful new area in organic synthesis, with many interesting
and useful new transformations appearing at an extremely
rapid pace.7 Based on our recent work involving the
dehydrative cyclization of allylic diols,8 we hypothesized that
cyclic alkoxyallenes such as 29 could be formed from 1 and,
by the action of the same gold catalyst, cyclize to form the
desired monounsaturated spiroketals 3.
(1) For reviews on spiroketals, see: (a) Kluge, A. F. Heterocycles 1986,
24, 1699. (b) Boivin, T. L. B. Tetrahedron 1987, 43, 3309. (c) Perron, F.;
Albizati, K. F. Chem. ReV. 1989, 89, 1617. (d) Jacobs, M. F.; Kitching,
W. B. Curr. Org. Chem. 1998, 2, 395. (e) Mead, K. T.; Brewer, B. N.
Curr. Org. Chem. 2003, 7, 227. (f) Aho, J. E.; Pihko, P. M.; Rissa, T. K.
Chem. ReV. 2005, 105, 4406.
(2) Tachibana, K.; Scheuer, P. J.; Tsukitani, Y.; Kikuchi, H.; Van Engen,
D.; Clardy, J.; Gopichand, Y.; Schmitz, F. J. J. Am. Chem. Soc. 1981, 103,
2469.
(6) For leading references on additional methods, see: (a) Danishefsky,
S. J.; Pearson, W. H. J. Org. Chem. 1983, 48, 3865. (b) Wincott, F. E.;
Danishefsky, S. J.; Schulte, G. Tetrahedron Lett. 1987, 28, 4951. (c) Whitby,
R.; Kocienski, P. Tetrahedron Lett. 1987, 28, 3619. (d) Whitby, R.;
Kocienski, P. J. Chem. Soc., Chem. Commun. 1987, 906. (e) Baker, R.;
Brimble, M. A. J. Chem. Soc., Perkin Trans. 1 1988, 125. (f) Tu, Y.-Q.;
Bryiel, K. A.; Kennard, C. H. L.; Kitching, W. A. J. Chem. Soc., Perkin
Trans. 1 1995, 1309. (g) Figueroa, R.; Hsung, R. P.; Guevarra, C. G. Org.
Lett. 2007, 9, 4857.
(3) Miller, T. W.; Chaiet, L.; Cole, D. J.; Cole, L. J.; Flor, J. E.;
Goegelman, R. T.; Gullo, V. P.; Joshua, H.; Kempf, A. J.; Krellwitz, R. L.;
Monaghan, R. L.; Ormond, R. E.; Wilson, K. E.; Albers-Schonberg, n/a.;
Putter, I. Antimicrob. Agents Chemother. 1979, 15, 368.
(4) Vongvilai, P.; Isaka, M.; Kittakoop, P.; Srikitikulchai, P.; Kongsaeree,
P.; Thebtaranonth, Y. J. Nat. Prod. 2004, 67, 457.
(5) Warabi, K.; Williams, D. E.; Patrick, B. O.; Roberge, M.; Andersen,
R. J. J. Am. Chem. Soc. 2007, 129, 508.
10.1021/ol802491m CCC: $40.75
Published on Web 12/02/2008
2009 American Chemical Society