Communications
[16] T. Nishimura, T. Onoue, K. Ohe, S. Uemura, J. Org. Chem. 1999,
64, 6750.
[17] N. Kornblum, W. J. Jones, G. J. Anderson, J. Am. Chem. Soc.
1959, 81, 4113.
[18] M. G. Edwards, J. M. J. Williams, Angew. Chem. 2002, 114, 4934;
Angew. Chem. Int. Ed. 2002, 41, 4740.
[19] A. Itoh, T. Kodana, S. Inagaki, Y. Masaki, Org. Lett. 2000, 2,
2455.
[20] H. B. Hass, M. L. Bender, J. Am. Chem. Soc. 1949, 71, 1767.
[21] V. Conte, F. Di Furia, G. Modena, J. Org. Chem. 1988, 53, 1665.
[22] F. Krꢀhnke, Angew. Chem. 1963, 75, 317; Angew. Chem. Int. Ed.
Engl. 1963, 2, 380.
[23] a)H. Ji, T. Mizugaki, K. Ebitani, K. Kaneda, Tetrahedron Lett.
2002, 43, 7179; b)K. Yamaguchi, N. Mizuno, Angew. Chem.
2002, 114, 4720; Angew. Chem. Int. Ed. 2002, 41, 4538.
[24] S. Suzuki, T. Onishi, Y. Fujita, H. Misawa, J. Otera, Bull. Chem.
Soc. Jpn. 1986, 59, 3287.
and KBr (1.0 equiv), the reaction took 2 h longer than in the
absence of KBr (entry 1). In addition, this result agrees well
ꢀ
with the fact that the OV(O2)2 anion could not be trapped
with TrCl (see above). We also found that OV(O2)2ꢀ ion is an
excellent catalyst. The separated aqueous phase containing
ꢀ
OV(O2)2 ions and PTC was used in the subsequent eight
oxidation runs. In the first run of the oxidation of benzyl
chloride and p-chlorobenzyl chloride, the yield was 70% and
73% respectively, the reaction time was 6 h. In the subse-
quent eight runs the yield was 90% and the reaction time was
shortened to 3.5 h. The reaction is self-accelerated by the
accumulated HCl. In the catalytic oxidation of p-chlorobenzyl
chloride, the substrate/catalyst ratio reached 1000:5 and the
reaction rates and the yields remained unchanged.
In our oxidation, only water was used to dilute the H2O2,
no organic solvents were used in the whole process. This
represents the first green oxidation of benzyl halides, which is
operationally simple and produces high yields and is well
suited for a variety of functionalized benzyl halides. Our new
green oxidation reaction provides a better solution for the
existing problems in the oxidation of benzyl halides. The
conversion of organic chlorides to aromatic aldehydes is
quantitative. The yields are more than 90%. The whole
process does not need any organic solvents. The two waste
products are water and HCl. The latter provides acidic
conditions to accelerate the reaction. The catalysts (V2O5 and
Aliquat 336)are inexpensive, stable and efficient (S/C 1000:5)
and can be reused without losing its efficiency.
[25] C.-G. Jia, F.-Y. Jing, W.-D. Hu, M.-Y. Huang, Y.-Y. Jiang, J. Mol.
Catal. 1994, 91, 139.
[26] S. Das, A. K. Panigrahi, G. C. Maikap, Tetrahedron Lett. 2003,
44, 1375.
[27] J. Martin, C. Martin, M. Faraj, J.-M. Bregeault, Nouv. J. Chim.
1984, 8, 141.
Received: May 14, 2003
Revised: August 18, 2003 [Z51902]
Keywords: alcohols · green chemistry · oxidation · vanadium
.
[1] C. Li, Y. Xu, M. Lu, Z. Zhao, L. Liu, Z. Zhao, Y. Cui, P. Zheng,
X. Ji, G. Gao, Synlett 2002, 2041.
[2] R. C. Larock, Comprehensive Organic Transformations, Vol. 1,
Wiley, New York, 1999, pp. 1205 – 1261.
[3] M. Hudlicky, Oxidations in Organic Chemistry, American
Chemical Society, Woshington, DC, 1990, pp. 114 – 159.
[4] K. Sato, M. Aoki, J. Takagi, K. Zimmermann, R. Noyori, Bull.
Chem. Soc. Jpn. 1999, 72, 2287.
[5] A. Butler, M. J. Clague, G. E. Meister, Chem. Rev. 1994, 94, 625.
[6] O. Bortolini, V. Conte, F. Di Furia, G. Modena, Nouv. J. Chim.
1985, 9, 147.
[7] R. Neumann, M. Levin-Elad, Appl. Catal. A 1995, 122, 85.
[8] Y. Maeda, N. Kakiuchi, S. Matsumura. T. Nishimura. T. Kawa-
mura, S. Uemura, J. Org. Chem. 2002, 67, 6718.
[9] R. Wever, M. B. E. Krenn in Vanadium in Biological System
(Ed.: N. D. Chasteen), Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1990, p. 81.
[10] U. Bora, G. Bose. M. K. Chaudhurl, S. S. Dahr, R. Gopinath,
A. T. Khan, B. K. Patel, Org. Lett. 2000, 2, 247.
[11] H. Kelm, H.-J. Krueger, Inorg. Chem. 1996, 35, 3553.
[12] G. J. Colpas, B. J. Hamstra, J. W. Kampf, V. L. Pecoraro, J. Am.
Chem. Soc. 1996, 118, 3469.
[13] Ullmann's Encyclopedia of Industrial Chemistry, 7th ed., Elec-
tronic release, Wiley, VCH, 2003.
[14] R. A. Sheldon, I. W. C. E. Arends, A, Dijksman, Catal. Today
2000, 57, 157.
[15] R. C. Larock, Comprehensive Organic Transformations, Vol. 2,
Wiley, New York, 1999, pp. 1222 – 1225.
5066
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 5063 –5066