C O M M U N I C A T I O N S
though it is impossible to rule out other mechanisms,16 such as
the reversible deprotonation of the ortho hydrogen in 3, which
could convert 3 to 5 via a nickel aryne intermediate.17
Hitchcock, P. B.; Procopiou, P. A. Angew. Chem., Int. Ed. 2007, 46, 6339–
6342. Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A. C. Chem.
Commun. 2007, 3664–3666. Braun, T.; Wehmeier, F.; Altenhoener, K.
Angew. Chem., Int. Ed. 2007, 46, 5321–5324. Anderson, D. J.; McDonald,
R.; Cowie, M. Angew. Chem., Int. Ed. 2007, 46, 3741–3744. Bailey, B. C.;
Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 5302–5303.
(2) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.;
Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857–7870.
(3) Crabtree, R. H. J. Organomet. Chem. 2004, 689, 4083–4091.
(4) Clot, E.; Besora, M.; Maseras, F.; Megret, C.; Eisenstein, O.; Oelckers,
B.; Perutz Robin, N. Chem. Commun. 2003, 490–491.
Scheme 4
(5) Clot, E.; Oelckers, B.; Klahn, A. H.; Eisenstein, O.; Perutz, R. N. Dalton
Trans. 2003, 4065–4074. Liu, W.; Welch, K.; Trindle, C. O.; Sabat, M.;
Myers, W. H.; Harman, W. D. Organometallics 2007, 26, 2589–2597.
(6) Whittlesey, M. K.; Perutz, R. N.; Moore, M. H. Chem. Commun. 1996,
787–788. Edelbach, B. L.; Jones, W. D. J. Am. Chem. Soc. 1997, 119,
7734–7742.
(7) Bach, I.; Poerschke, K.-R.; Goddard, R.; Kopiske, C.; Krueger, C.; Rufinska,
A.; Seevogel, K. Organometallics 1996, 15, 4959–4966. Braun, T.; Cronin,
L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem.
2001, 25, 19–21. Braun, T.; Foxon, S. P.; Perutz, R. N.; Walton, P. H.
Angew. Chem., Int. Ed. 1999, 38, 3326–3329. Sladek, M. I.; Braun, T.;
Neumann, B.; Stammler, H.-G. J. Chem. Soc., Dalton Trans. 2002, 297–
299. Schaub, T.; Radius, U. ChemsEur. J. 2005, 11, 5024–5030. Schaub,
T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964–15965.
(8) Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997,
16, 4920–4928.
(9) Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004, 126,
5268–5276.
These results provide insight into the steps required to utilize
these C-F bond activations into catalytic cycles; to generate
Ni catalysts for selective C-F bond functionalization in a wide
range of polyfluoroaromatics it will be necessary to alter the
choice of ancillary ligands to render C-F bond oxidative addition
significantly faster than ligand redistribution reactions, thus
avoiding unwanted byproducts that result from C-H bond
activation. Equally importantly, these low activation barrier C-H
bond activations could be exploited to extend the scope of Ni(0)
C-H bond activation and catalytic functionalization18 to include
polyfluoroaromatics19 and other weakly activated substrates,20
even when C-H bond activation products are thermodynamically
disfavored but kinetically accessible. Research toward both these
goals is currently underway.21
(10) A related anthracene adduct is known: Stanger, A.; Boese, R. J. Organomet.
Chem. 1992, 430, 235-243.
(11) Darensbourg, M. Y.; Ludwig, M.; Riordan, C. G. Inorg. Chem. 1989, 28,
1630–1634.
(12) Schaub, T.; Backes, M.; Radius, U. Eur. J. Inorg. Chem. 2008, 2680–
2690.
(13) Aizenberg, M.; Milstein, D. Science 1994, 265, 359–361. Kraft, B. M.;
Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 10973–10979.
(14) In the reaction of 1 with isotopically pure 1,2,4,5-C6F4HD described, the
complete scrambling of labels to also provide C6F4H2 and C6F4D2 was also
observed over the course of days, presumably by a related ligand exchange
between 2a and 2b.
(15) It is possible that the Ni(PEt3)2 moiety in 1 plays a role in this reaction as
a Lewis acid capable of abstracting PEt3 from either square planar complex
2 or 3. The resultant electron-poor intermediate could increase the rate of
hydride/fluoride exchange. The Lewis acidic reactivity of a related source
of the Ni(PEt3)2 moiety has been previously reported in the coupling of
nickel arynes: Keen, A. L.; Doster, M.; Johnson, S. A. J. Am. Chem. Soc.
2007, 129, 810–819.
(16) Werkema, E. L.; Andersen, R. A. J. Am. Chem. Soc. 2008, 130, 7153–
7165.
(17) Bennett, M. A.; Wenger, E. Chem. Ber. 1997, 130, 1029–1042.
(18) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448–
2449. Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007,
46, 8872–8874. Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem.
Soc. 2006, 128, 8146–8147. Clement Nicolas, D.; Cavell Kingsley, J. Angew.
Chem., Int. Ed. 2004, 43, 3845–3847. Liang, L.-C.; Chien, P.-S.; Huang,
Y.-L. J. Am. Chem. Soc. 2006, 128, 15562–15563.
Acknowledgment. Acknowledgement is made to the Petroleum
Research Fund, the Natural Science and Engineering Council
(NSERC) of Canada, and the Shared Hierarchical Academic
Research Network (SHARCNET) for their financial support.
(19) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc.
2006, 128, 8754–8756. Lafrance, M.; Shore, D.; Fagnou, K. Org. Lett.
2006, 8, 5097–5100.
(20) The increased metal-carbon bond strength for aryl groups bearing electron-
withdrawing groups versus unsubstituted phenyl rings provides a thermo-
dynamic advantage for the C-H bond activation of fluorinated aromatics
versus benzene, despite the fact that the C-H bonds are stronger in the
former (for a leading reference see ref 4).
Supporting Information Available: Coordinates and energies from
DFT calculations; full experimental details; CIF files for 1 and 5. This
References
(1) Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749–2757. Burdeniuc, J.;
Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145–154. Kiplinger,
J. L.; Richmond, T. G.; Osterberg, C. E. Chem. ReV. 1994, 94, 373–431.
Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. ReV. 1997, 97, 3425–
3468. Rieth, R. D.; Brennessel, W. W.; Jones, W. D. Eur. J. Inorg. Chem.
2007, 283, 9–2847. Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.;
(21) An example of selective C-F bond activation in tri- and tetrafluorobenzenes
by a nickel complex has recently been reported: (a) Schaub, T.; Fischer,
P.; Steffen, A.; Braun, T.; Radius, U.; Mix, A. J. Am. Chem. Soc. 2008,
130, 9304–9317.
JA8081395
9
17280 J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008