ORGANIC
LETTERS
2009
Vol. 11, No. 1
185-188
Ruthenium-Catalyzed Synthesis of
Functionalized 1,3-Dienes
Mathieu Achard, Nolwenn Derrien, Hui-Jun Zhang, Bernard Demerseman, and
Christian Bruneau*
UMR 6226, CNRS-UniVersite´ de Rennes 1, Sciences Chimiques-Catalyse et
Organome´talliques, Campus de Beaulieu, 35042 Rennes Cedex, France
christian.bruneau@uniV-rennes1.fr
Received October 14, 2008
ABSTRACT
Functionalized 1,3-diene derivatives have been prepared by regioselective allylation of various nucleophiles with 1,3-dienic carbonates in the
presence of a (N,O-carboxylate) allylruthenium precatalyst.
Allylation reactions catalyzed by transition-metal com-
plexes have attracted much interest as a powerful tool in
organic synthesis for C-C and C-heteroatom bond forma-
tion.1 Recently, ruthenium catalysts have been largely used
in reactions involving unsymmetrical allylic substrates to
promote regioselective formation of branched compounds
containing a chiral center.2,3 Regioselective allylation with
simple allylic substrates such as hexenyl, crotyl, or cinnamyl
derivatives has been studied, but only a few catalytic systems
have been explored to gain access to more highly function-
alized compounds.4 Notably, transition metal-catalyzed al-
lylation reactions involving 1,2-disubstituted allylic substrates
featuring a conjugated diene substructure have received little
attention.5
Herein we report a Cp*Ru-based catalytic system that
allows a regioselective allylation of a variety of nucleophiles
using mono- and dicarbonates to produce functionalized 1,3-
dienes with synthetic potential.5c,6 The 1,3-dienic allylic
substrates involved in this study are represented in Figure 1
along with the tested ruthenium precatalysts [Cp*Ru(MeCN)3]-
[PF6] I,2c,7 [Cp*Ru(t-Bu2-bipy)(MeCN)][PF6] II,3a and [Cp*Ru
(1) (a) Tsuji, J. Transition Metal Reagents and Catalysts: InnoVations
in Organic Synthesis, Wiley: Chichester, 2000; p 109. (b) Trost, B. M.;
Crawley, M. L. Chem. ReV. 2003, 103, 2921. (c) Helmchen, G.; Pfaltz, A.
Acc. Chem. Res. 2000, 33, 336.
(4) (a) Burger, E. C.; Tunge, J. A. Chem. Commun. 2005, 2835. (b)
Austeri, M.; Linder, D.; Lacour, J. Chem. Eur. J. 2008, 14, 5737. (c) Gruber,
S.; Zaitsev, A. B.; Wo¨rle, M.; Pregosin, P. S. Organometallics 2008, 27,
3796. (d) Onitsuka, K.; Okuda, H.; Sasori, H. Angew. Chem., Int. Ed. 2008,
47, 1454.
(2) (a) Zhang, S. W.; Mitsudo, T.; Kondo, T.; Watanabe, Y. J.
Organomet. Chem. 1993, 450, 197. (b) Kondo, T.; Mitsudo, T. In Ruthenium
in Organic Synthesis; S.-I. Murahashi, S.-I., Ed.; Wiley-VCH: Weinheim,
2004; p 129. (c) Trost, B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem., Int.
Ed. 2002, 41, 1059. (d) Hermatschweiler, R.; Fernandez, I.; Breher, F.;
Pregosin, P. S.; Veiros, L. F.; Calhorda, M. J. Angew. Chem., Int. Ed. 2005,
(5) (a) Shimizu, I.; Matsumoto, Y.; Nishikawa, M.; Kawahara, T.; Satake,
A.; Yamamoto, A. Chem. Lett. 1998, 983. (b) Gamez, P.; Ariente, C.; Gore´,
J.; Cazes, B. Tetrahedron 1998, 54, 14835. (c) Mori, M.; Tonogaki, K.;
Nishiguchi, N. J. Org. Chem. 2002, 67, 224.
44, 4397
.
(6) For selected references see: (a) Han, X.; Corey, E. J. Org. Lett. 1999,
1, 1871. (b) Castagnolo, D.; Renzulli, M. L.; Galletti, E.; Corelli, F.; Botta,
(3) (a) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.;
Bruneau, C. Angew. Chem., Int. Ed. 2003, 42, 5066. (b) Bruneau, C.;
Renaud, J.-L.; Demerseman, B. Chem. Eur. J. 2006, 12, 5178. (c) Zhang,
H.-J.; Demerseman, B.; Toupet, L.; Xi, Z.; Bruneau, C. AdV. Synth. Catal.
M. Tetrahedron: Asymmetry 2005, 16, 2893
.
(7) (a) McNair, A. M.; Boyd, D. C.; Mann, K. R. Organometallics 1986,
5, 303. (b) Bruneau, C.; Demerseman, B. e-EROS 2008, DOI: 10.1002/
2008, 350, 1601, and references therein
.
047084289X.rn00810.
10.1021/ol8023488 CCC: $40.75
Published on Web 12/02/2008
2009 American Chemical Society