developing an effective organocatalytic method is a highly
desirable goal. In the past few years, a series of thiourea-
based catalysts have been designed, synthesized, and used
to effectively catalyze various types of asymmetric reac-
tions.3,4 Great progress has been achieved in this field as a
result of seminal contributions from the groups of Jacobsen,5
Takemoto,6 Connon,7 Wang,8 and Deng.9 Nevertheless, the
potential application of these thiourea catalysts in doubly
stereocontrolled asymmetric reactions remains a much less
developed field, and there is still great demand for novel
bifunctional thiourea catalysts for this purpose. We first report
herein a new class of dehydroabietic amine-substituted
primary amine-thiourea bifunctional catalysts and their
application in a highly enantioselective and doubly stereo-
controlled synthesis of (S)- or (R)-γ-nitro heteroaromatic
ketones with excellent enantioselectivities.10,11 Our attention
was especially drawn to γ-nitro heteroaromatic ketones
because they could be readily converted to chiral pyrrolidine
carboxylic acids. In particular, ꢀ2-pyrrolidine carboxylic acids
are important building blocks in the synthesis of ꢀ-peptides,
bioactive molecules, and pharmaceuticals or are of other
potential biomedical utilities.12
Inspired by the excellent structural backbone and well-
defined stereocenters of dehydroabietic amine, we designed
and synthesized a new class of primary amine-thiourea
bifunctional catalysts (1S,2S)-L3 and (1R,2R)-L3 (see Sup-
porting Information). With these novel catalysts in hand, the
effects of the thiourea catalysts were investigated in com-
parison with other thiourea catalysts. A model reaction of
acetophenone to trans-ꢀ-nitrostyrene was performed in
CH2Cl2 at room temperature in the presence of 15 mol % of
thiourea catalysts (Table 1).
These results indicate that the stereochemical control
of the reaction is mainly provided by the 1,2-diaminocy-
clohexane moiety of thiourea (switching the configuration
of 1,2- diaminocyclohexane moiety from (R,R) to (S,S)
exhibited an opposite sense of asymmetric induction) and
that the catalytic activity depends mainly on the remaining
chiral scaffold moiety of thiourea (the inherent property
of stereochemical structure of the remaining chiral scaffold
moiety of thiourea) and also on the suitable matching of
the configuration of the 1,2-diaminocyclohexane moiety
with the remaining chiral scaffold moiety. In addition, this
remaining chiral amine moiety of thiourea also has an
important effect on the stereoselectivity for the formation
of adduct. These results also reveal that the catalytic
activity increased in the order of L3 > L2 > L1, which
corresponds to thiourea catalysts bearing a dehydroabietic
amine scaffold, a saccharide scaffold, and a phenyletha-
namine scaffold. Although Ma’s catalyst L213 with an
(R,R)-1,2-diaminocyclohexane moiety can induce high
enantioselectivity (97% ee, entry 3) and afford the (S)-
adduct with a moderate yield of 60%, the catalytic activity
of L2 can be inhibited drastically when replacing the (R,R)
configuration with an (S,S) configuration (in other words,
the (S,S) configuration of the 1,2-diaminocyclohexane
moiety could not match the ꢀ-D-glucopyranose scaffold
of thiourea), resulting in relatively low enantioselectivity
(1) For reviews, see: (a) Burke, M. D.; Schreiber, S. L. Angew. Chem.,
Int. Ed. 2004, 43, 46. (b) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari,
G.; Giannini, E. Chem. Soc. ReV. 2003, 32, 115
.
(2) For selected for recent examples, see: (a) Saha, B.; Smith, C. R.;
RajanBabu, T. V. J. Am. Chem. Soc. 2008, 130, 9000. (b) Caldero´n, F.;
Doyagu¨ez, E. G.; Cheong, P. H.-Y.; Ferna´ndez-Mayoralas, A.; Houk, K. N.
J. Org. Chem. 2008, 73, 7916. (c) Fleming, F. F.; Wei, G.; Zhang, Z.;
Steward, O. W. J. Org. Chem. 2007, 72, 5270. (d) Du, D. M.; Lu, S. F.;
Fang, T.; Xu, J. J. Org. Chem. 2005, 70, 3712. (e) Kim, J. H.; Long, M. J. C.;
Kim, J. Y.; Park, K. H. Org. Lett. 2004, 6, 2273. (f) Arseniyadis, S.; Valleix,
A.; Wagner, A.; Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314
.
(3) For reviews concerning bifunctional thiourea organocatalysis, see:
(a) Doyle, A. G.; Jacobsen, E. N. Chem. ReV. 2007, 107, 5713. (b) Connon,
S. J. Chem.-Eur. J. 2006, 12, 5418. (c) Taylor, M. S.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2006, 45, 1520. (d) Takemoto, Y. Org. Biomol.
Chem. 2005, 3, 4299
.
(4) For selected bifunctional chiral thiourea catalyzed reactions, see: (a)
Sibi, M. P.; Itoh, K. J. Am. Chem. Soc. 2007, 129, 8064. (b) Pan, S. C.;
Zhou, J.; List, B. Angew. Chem., Int. Ed. 2007, 46, 612. (c) Tillman, A. L.;
Ye, J. X.; Dixon, D. J. Chem. Commun. 2006, 1191. (d) Dixon, D. J.;
Richardson, R. D. Synlett 2006, 81. (e) Yalalov, D. A.; Tsogoeva, S. B.;
Schmatz, S. AdV. Synth. Catal. 2006, 348, 826. (f) Herrera, R. P.; Sgarzani,
V.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576. (g)
Tsogoeva, S. B.; Yalalov, D. A.; Hateley, M. J. Eur. J. Org. Chem. 2005,
4995. (h) Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. AdV. Synth. Catal.
2005, 347, 1643
.
(5) For selected recent examples, see: (a) Zuend, S. J.; Jacobsen, E. N.
J. Am. Chem. Soc. 2007, 129, 15872. (b) Raheem, I. T.; Thiara, P. S.;
Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (c)
Tan, K. L.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46, 1315. (d)
Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006,
45, 6366. (e) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128,
7170. (f) Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 8964.
(g) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (h)
Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005,
44, 6700.
(6) (a) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007,
129, 6686. (b) Inokuma, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc.
2006, 128, 9413. (c) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.;
Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119. (d) Hoashi, Y.; Okino,
T.; Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44, 4032. (e) Xu, X. N.;
Furukawa, T.; Okino, T.; Miyabe, H.; Takemoto, Y. Chem. Eur. J. 2005,
12, 466.
(10) For recent reviews concerning asymmetric Michael addition to
nitroalkenes, see: (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.
Chem. ReV. 2007, 107, 5471. (b) Enders, D.; Grondal, C.; Hu¨ttl, M. R. M.
Angew. Chem., Int. Ed. 2007, 46, 1570. (c) Pellissier, H. Tetrahedron 2007,
63, 9267. (d) Almas¸i, D.; Alonso, D. A.; Na´jera, C. Tetrahedron: Asymmetry
2007, 18, 299. (e) Vicario, J. L.; Bad´ıa, D.; Carrillo, L. Synthesis 2007,
2065. (f) Sulzer-Mosse´, S.; Alexakis, A. Chem. Commun. 2007, 3123. (g)
Ballini, R.; Bosica, G.; Palmieri, A.; Petrini, M. Chem. ReV. 2005, 105,
933. (h) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002,
(7) (a) McCooey, S. H.; Conon, S. J. Org. Lett. 2007, 9, 599. (b)
McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org. Chem. 2006, 71, 7494.
(c) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.
(8) (a) Zu, L. S.; Wang, J.; Li, H.; Xie, H. X.; Jiang, W.; Wang, W.
J. Am. Chem. Soc. 2007, 129, 1036. (b) Zu, L. S.; Xie, H. X.; Li, H.; Wang,
H.; Jiang, W.; Wang, W. AdV. Synth. Catal. 2007, 349, 1882. (c) Wang, J.;
Li, H.; Zu, L. S.; Jiang, W.; Xie, H. X.; Duan, W. H.; Wang, W. J. Am.
Chem. Soc. 2006, 128, 12652. (d) Wang, J.; Li, H.; Duan, W.-H.; Zu, L. S.;
Wang, W. Org. Lett. 2005, 7, 4713. (e) Wang, J.; Li, H.; Yu, X. H.; Zu,
L. S.; Wang, W. Org. Lett. 2005, 7, 4293.
1877
(11) Chen, F.-X.; Shao, C.; Wang, Q.; Gong, P.; Zhang, D.-Y.; Zhang,
B-Z.; Wang, R. Tetrahedron Lett. 2007, 48, 8456
.
.
(12) (a) Galeazzi, R.; Martelli, G.; Mobbili, G.; Orena, M.; Rinaldi, S.
Tetrahedron: Asymmetry 2003, 14, 3353. (b) Kasper, S.; Blagden, M.;
Seghers, S.; Veerman, A.; Volz, H. P.; Geniaux, A.; Strub, N.; Marchand,
A.; Maisonobe, P.; Mikkelsen, H. Eur. Neuropsychopharm. 2002, 12, 341.
(c) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101,
3219. (d) EnantioselectiVe Synthesis of ꢀ-Amino Acids; Juaristi, E., Ed.;
Wiley-VCH: New York, 1997.
(9) (a) Wang, Y.; Li, H. M.; Wang, Y. Q.; Liu, Y.; Foxman, B. M.;
Deng, L. J. Am. Chem. Soc. 2007, 129, 6364. (b) Wang, B. M.; Wu, F. H.;
Wang, Y.; Liu, X. F.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768. (c)
Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (d) Wang,
Y. Q.; Song, J.; Hong, R.; Li, H. M.; Deng, L. J. Am. Chem. Soc. 2006,
128, 8156.
(13) Liu, K.; Cui, H.-F.; Nie, J.; Dong, K.-Y.; Li, X.-J.; Ma, J.-A. Org.
Lett. 2007, 9, 923.
154
Org. Lett., Vol. 11, No. 1, 2009