C O M M U N I C A T I O N S
to the desired tricyclic ketal 14. In addition to 14 (ca. 10-15%),
the acid-catalyzed ketalization yielded a tricyclic lactone lacking
the C4 silyl protecting group (ca. 45-55%) and an unidentified
isomeric ketal (ca. 15-20%). Resubmission of the isomeric ketal
to the TsOH/MeOH conditions, combination with the unprotected
tricyclic lactone, and silylation of the C4 hydroxyl group provided
an acceptable combined yield of 14.
stimulating discussions and Dr. Sheo Singh (Merck) for an authentic
natural sample of zaragozic acid C.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
The presence of the δ-lactone in 14 highlights the remaining
stereochemical problem: the incorrect configurations at C6 and C3.
The lactone was opened under unusual but uniquely effective
conditions (potassium tert-butoxide in tert-amyl alcohol) and
surprisingly occurred with concomitant inversion of the C6 ste-
reocenter.20 A retro-aldol/aldol sequence is the probable mechanism
accounting for this fortuitous stereochemical correction,21 the
occurrence of which would have been impossible in the absence
of functional groups in the correct oxidation state. The reaction
conditions resulted in partial saponification of the methyl esters
necessitating re-esterification with isourea 15.22 Epimerization of
the inconsequential mixture of esters (16) with NaOMe in MeOH
achieved the desired configuration of the C3 stereocenter. All of
the ester groups were unexpectedly cleaved in this reaction; re-
esterification of the resulting triacid using 15 gave the fully
functionalizedzaragozicacidcore17withtherequiredstereochemistry.
(1) For an approach directed toward polyacetate synthesis, see: Boxer, M. B.;
Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48-49.
(2) Dawson, M. J.; Farthing, J. E.; Marshall, P. S.; Middleton, R. F.; O’Neill,
M. J.; Shuttleworth, A.; Stylli, C.; Tait, R. M.; Taylor, P. M.; Wildman,
H. G.; Buss, A. D.; Langley, D.; Hayes, M. V. J. Antibiot. 1992, 45, 639–
647.
(3) Bergstrom, J. D.; Kurtz, M. M.; Rew, D. J.; Amend, A. M.; Karkas, J. D.;
Bostedor, R. G.; Bansal, V. S.; Dufresne, C.; VanMiddlesworth, F. L.;
Hensens, O. D. Proc. Nat. Acad. Sci.U.S.A. 1993, 90, 80–84.
(4) Li, H. Y.; Appelbaum, F. R.; Willman, C. L.; Zager, R. A.; Banker, D. E.
Blood 2003, 101, 3628–3634.
(5) (a) Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1994, 116, 10825–
10826. (b) Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1995, 117, 8106–
8125. (c) Nicolaou, K. C.; Yue, E. W.; Naniwa, Y.; De Riccardis, F.; Nadin,
A.; Leresche, J. E.; La Greca, S.; Yang, Z. Angew. Chem., Int. Ed. Engl.
1994, 33, 2184–2187. (d) Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; La
Greca, S.; Tsuri, T.; Yue, E. W.; Yang, Z. Angew. Chem., Int. Ed. Engl.
1994, 33, 2187–2190. (e) Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; Yue,
E. W.; La Greca, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 2190–2191.
(f) Nicolaou, K. C.; Yue, E. W.; La Greca, S.; Nadin, A.; Yang, Z.;
Leresche, J. E.; Tsuri, T.; Naniwa, Y.; De Riccardis, F. Chem.sEur. J.
1995, 1, 467–494. (g) Evans, D. A.; Barrow, J. C.; Leighton, J. L.;
Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 116, 12111–12112.
(h) Stoermer, D.; Caron, S.; Heathcock, C. H. J. Org. Chem. 1996, 61,
9115–9125. (i) Caron, S.; Stoermer, D.; Mapp, A. K.; Heathcock, C. H. J.
Org. Chem. 1996, 61, 9126–9134. (j) Sato, H.; Nakamura, S.; Watanabe,
N.; Hashimoto, S. Synlett 1997, 451–454. (k) Nakamura, S.; Sato, H.; Hirata,
Y.; Watanabe, N.; Hashimoto, S. Tetrahedron 2005, 61, 11078–11106. (l)
Armstrong, A.; Jones, L. H.; Barsanti, P. A. Tetrahedron Lett. 1998, 39,
3337–3340. (m) Armstrong, A.; Barsanti, P. A.; Jones, L. H.; Ahmed, G.
J. Org. Chem. 2000, 65, 7020–7032. (n) Tomooka, K.; Kikuchi, M.; Igawa,
K.; Suzuki, M.; Keong, P.-H.; Nakai, T. Angew. Chem., Int. Ed. 2000, 39,
4502–4505. (o) Freeman-Cook, K. D.; Halcomb, R. L. J. Org. Chem. 2000,
65, 6153–6159. (p) Nakamura, S.; Hirata, Y.; Kurosaki, T.; Anada, M.;
Kataoka, O.; Kitagaki, S.; Hashimoto, S. Angew. Chem., Int. Ed. 2003, 42,
5351–5355. (q) Hirata, Y.; Nakamura, S.; Watanabe, N.; Kataoka, O.;
Kurosaki, T.; Anada, M.; Kitagaki, S.; Shiro, M.; Hashimoto, S.
Chem.sEur. J. 2006, 12, 8898–8925. (r) Bunte, J. O.; Cuzzupe, A. N.;
Daly, A. M.; Rizzacasa, M. A. Angew. Chem., Int. Ed. 2006, 45, 6376–
6380.
Our synthesis differentiates the C6 and C7 alcohols in the key
intermediate 17, but installation of the C6 acyl side chain rendered
subsequent debenzylation impracticable in our hands. Instead,
debenzylation and acetylation were achieved under standard condi-
tions to give the triacetate 18, a compound utilized by Carreira in
the total synthesis of zaragozic acid C.5a,b The analytical data were
in full accord with those reported (1H NMR in CDCl3 and 13C NMR
in both CD3OD5b and CDCl3,5r IR, TLC, sign of rotation). The
preparation of 18 thus constitutes a formal synthesis of zaragozic
acid C. As illustrated in Scheme 2, we applied the Carreira protocol
to complete the synthesis of zaragozic acid C (1) in four steps from
triacetate 18. The synthetic material was identical to a sample of
natural material.
(6) Reviews: (a) Nadin, A.; Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1996,
35, 1622–1656. (b) Jotterand, N.; Vogel, P. Curr. Org. Chem. 2001, 5,
637–661. (c) Armstrong, A.; Blench, T. J. Tetrahedron 2002, 58, 9321–
9349.
The zaragozic acid C synthesis was achieved with concurrent
creation of the carbon skeleton and tetrahedral stereochemistry with
only one oxidation state change (alkene ozonolysis) and no
functional group repair in the core synthesis. This study further
highlights the utility of silyl glyoxylates as geminal dipolar glycolic
acid synthons. Considering the ubiquity of this functional group in
organic chemistry, the applicability of reagents like 4 for a range
of efficient molecular constructions appears promising. More
broadly, given the common occurrence of natural products that
contain repeating subunits, the concept of controlled oligomerization
could have significant ramifications in small molecule synthesis.
The development of new reagents and attendant synthetic strategy
will be required for the full realization of this potential, but the
chemistry described herein provides a working blueprint for such
tactics.
(7) (a) Hendrickson, J. B. Top. Curr. Chem. 1976, 62, 49–172. (b) Hendrickson,
J. B. J. Am. Chem. Soc. 1977, 99, 5439–5450.
(8) For an excellent summary of metrics, see: Baran, P. S.; Maimone, T. J.;
Richter, J. M. Nature 2007, 446, 404-408.
(9) Nicewicz, D. A.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 6170–6171.
(10) Linghu, X.; Satterfield, A. D.; Johnson, J. S. J. Am. Chem. Soc. 2006, 128,
9302–9303.
(11) Nicewicz, D. A.; Bre´te´che´, G.; Johnson, J. S. Org. Synth. 2008, 85, 278–
286.
(12) Brook, A. G. Acc. Chem. Res. 1974, 7, 77–84.
(13) The remainder of the mass balance was attributed to a product resulting
from γ addition of the initially formed enolate to the second equivalent
of 4.
(14) CCDC 694353 (7) and 694354 (11) contain the supplementary crystal-
lographic data for this paper. These data can be obtained free of charge
m.ac.uk/data_request/cif.
(15) Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127,
1090–1091.
(16) Molander, G. A.; Etter, J. B.; Harring, L. S.; Thorel, P. J. J. Am. Chem.
Soc. 1991, 113, 8036–8045.
(17) Marcos, I. S.; Garcia, N.; Sexmero, M. J.; Hernandez, F. A.; Escola, M. A.;
Basabe, P.; Diez, D.; Urones, J. G. Tetrahedron 2007, 63, 2335–2350.
(18) Jung, M. E.; Gervay, J. J. Am. Chem. Soc. 1991, 113, 224–232.
(19) The Supporting Information contains details of the syntheses of organo-
lithium 12 and the unsaturated acid 19.
Acknowledgment. Funding for this work was provided by the
National Institutes of Health (National Institute of General Medical
Sciences, Grant GM068443), Eli Lilly, Amgen, and GlaxoSmith-
Kline. D.A.N. acknowledges an ACS Division of Organic Chem-
istry Fellowship sponsored by Novartis. J.S.J. is an Alfred P. Sloan
Fellow and a Camille-Dreyfus Teacher Scholar. X-ray crystal-
lography was performed by Dr. Peter White. We acknowledge and
thank Dr. Victor Cee (Amgen) and Dr. Wes Trotter (Merck) for
(20) Although the silyl group is cleaved during this reaction, its presence is
essential for the success of the sequence.
(21) White, J. D.; Cutshall, N. S.; Kim, T. S.; Shin, H. J. Am. Chem. Soc. 1995,
117, 9780–9781.
(22) Mathias, L. J. Synthesis 1979, 561–576.
JA808347Q
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17283