reported.7 Diarylprolinol silyl ethers,8 which have been
developed independently by our group9 and Jørgensen’s
group,10 have been successfully utilized by several research
groups (Figure 1). We have reported the [4 + 2] cycload-
dition reaction using diarylprolinol silyl ethers as
organocatalysts.2e,f We have applied diphenylprolinol silyl
ether to the reaction of R,ꢀ-unsaturated aldehydes with
dimethyl 3-oxopentanedioate to find that a formal carbo [3
+ 3] cycloaddition reaction proceeds in a highly enantiose-
lective manner, which will be described in this paper.
unsaturated aldehyde and 3-oxopentanedioate via the domino
reaction of the Michael reaction and hydration of the resulting
enamine followed by a Knoevenagel condensation reaction.
Our scenario is as follows (Scheme 1). An amine catalyst
and R,ꢀ-unsaturated aldehyde 5 could generate an iminium
ion, which would react with dimethyl 3-oxopentanedioate 6
to generate enamine 8 by an enantioselective Michael
reaction. Hydration occurs to afford aldehyde 9, and an
intramolecular Knoevenagel condensation reaction would
proceed to provide the functionalized cyclohexenone deriva-
tive 10. It should be noted that Jørgensen and co-workers
reported the synthesis of a chiral cyclohexenone derivative
from tert-butyl 3-oxobutyrate and an R,ꢀ-unsaturated alde-
hyde in the presence of diarylprolinol silyl ether, followed
by treatment with TsOH under reflux conditions.13 During
the preparation of this manuscript, Jørgensen and co-workers
reported the domino reaction using the same starting materi-
als 5 and 6, affording the 2:1 addition product 12 with
excellent enantioselectivity without formation of the 1:1
addition product.14
Figure 1. Organocatalysts examined in the present study.
Scheme 1. Enantioselective Domino Reaction of 5 and 6
The domino reaction is a powerful method for the
construction of complex molecules in a single process,11 and
there are several successful organocatalysis-mediated domino
reactions.12 We expected that the formal carbo [3 + 3]
cycloaddition reaction would proceed between an R,ꢀ-
(6) (a) Hong, B.-C.; Wu, M.-F.; Tseng, H.-C.; Liao, J.-H. Org. Lett.
2006, 8, 2217. (b) Cao, C.-L.; Sun, X.-L.; Kang, Y.-B.; Tang, Y. Org. Lett.
2007, 9, 4151.
(7) For reviews on organocatalysis, see: (a) Asymmetric Organocatalysis;
Berkessel, A., Groger, H., Eds.; Wiley-VCH: Weinheim, 2005. (b) Dalko,
P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (c) Hayashi, Y. J.
Syn. Org. Chem. Jpn. 2005, 63, 464. (d) List, B. Chem. Commun. 2006,
819. (e) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001. (f)
Gaunt, M. J.; Johnsson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery
Today 2007, 12, 8. (g) EnantioselectiVe Organocatalysis; Dalko, P. I., Ed.;
Wiley-VCH: Weinheim, 2007. (h) Dondoni, A.; Massi, A. Angew. Chem.,
Int. Ed. 2008, 47, 4638. (i) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli,
G. Angew. Chem., Int. Ed. 2008, 47, 6138.
(8) For a review, see: (a) Palomo, C.; Mielgo, A. Angew. Chem., Int.
Ed. 2006, 45, 7876. (b) Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3,
922.
(9) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int.
Ed. 2005, 44, 4212.
The reaction of cinnamaldehyde and dimethyl 3-oxopen-
tanedioate 6 was selected as a model, and the reaction was
investigated in detail. We soon found that the molar ratio of
the reagents is very important: when 1.5 equiv of tricarbonyl
compound 6 was used, the desired product was not formed;
instead, the bicylo[3.3.1]nonene derivative 12 was generated
as a single isomer in 51% yield, which is the main product
obtained by Jørgensen and co-workers.14 When 0.5 equiv
of 6 was employed, diene derivative 13 was isolated in 55%
yield, which would be generated by the overreaction of the
Michael product 9 with another cinnamaldehyde via Kno-
evenagel condensation. This result indicates that the inter-
molecular Knoevenagel condensation is faster than hydration
of the enamine 8.
(10) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794. (b) Marigo, M.; Fielenbach, D.;
Braunton, A.; Kjærsgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2005, 44, 3703.
(11) (a) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in
Organic Synthesis; Wiley-VCH: Weinheim, 2006. For reviews, see: (b)
Enders, D.; Grondal, C.; Hu¨ttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46,
1570. (c) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.
(12) For selected examples of organocatalytic asymmetric domino
reactions, see: (a) Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III
Angew. Chem., Int. Ed. 2003, 42, 4233. (b) Yang, J. W.; Fonseca, M. T. H.;
List, B. J. Am. Chem. Soc. 2005, 127, 15036. (c) Huang, Y.; Walji, A. M.;
Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051.
(d) Marigo, M.; Schulte, T.; Franzen, J.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 15710. (e) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe,
G. Nature 2006, 441, 861. (f) Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am.
Chem. Soc. 2006, 128, 10354. (g) Carlone, A.; Cabrera, S.; Marigo, M.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1101. (h) Li, H.; Wang,
J.; Xie, H.; Zu, L.; Jiang, W.; Duesler, E. N.; Wang, W. Org. Lett. 2007,
9, 965. (i) Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew. Chem.,
Int. Ed. 2007, 46, 4922. (j) Reyes, E.; Jiang, H.; Milelli, A.; Elsner, P.;
Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 9202. (k)
Hazelard, D.; Ishikawa, H.; Hashizume, D.; Koshino, H.; Hayashi, Y. Org.
Lett. 2008, 10, 1445.
(13) Carlone, A.; Marigo, M.; North, C.; Landa, A.; Jørgensen, K. A.
Chem. Commun. 2006, 4928.
(14) Bertelsen, S.; Johansen, R. L.; Jørgensen, K. A. Chem. Commun.
2008, 3016.
46
Org. Lett., Vol. 11, No. 1, 2009