C O M M U N I C A T I O N S
Table 2. Asymmetric, Bifunctional Catalytic R-Fluorination
Finally, one of the prime advantages of generating chiral,
R-fluorinated reactive intermediates “in a flask” is the ability to
quench them with drugs, natural products, and other exotic
nucleophiles to produce interesting and potentially useful deriva-
tives. For example, work up of a standard fluorination of 3-phthal-
imidopropionyl chloride (1b) with the antiprotozoal isoquinoline
alkaloid12 natural product (+)-emetine produces the diastereomeri-
cally pure fluorinated derivative 7 in 91% yield (eq 4).
Along these lines, one can imagine a wide range of fluorinated
intermediates coupled with a vast array of natural nucleophiles to
produce a virtually limitless number of derivatives. Future work
on enantioselective fluorination will concentrate on the synthesis
of other medicinally significant intermediates and on a detailed
mechanistic investigation of this new method.
Acknowledgment. T.L. thanks the NIH (Grant GM064559) and
the John Simon Guggenheim Memorial Foundation for support.
D.H.P. thanks Johns Hopkins for a Zeltmann Fellowship.
Supporting Information Available: Procedures and compound
characterization. This material is available free of charge via the Internet
References
(1) (a) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013–1029. (b) Ismail, F. M. D.
J. Fluorine Chem. 2002, 118, 27–33. (c) Maienfisch, P.; Hall, R. G. Chimia
2004, 58, 93–99.
a Reactions run with 1 equiv acid chloride, Hu¨nig’s base, NFSi, and
catalysts: 10 mol
% BQd, and 3 mol % (1,3-dppp)NiCl2 or
(2) Representative examples: (a) Reddy, D. S.; Shibata, N.; Nagai, J.; Nakamura,
S.; Toru, T.; Kanemasa, S. Angew. Chem., Int. Ed. 2008, 47, 164–168. (b)
Suzuki, T.; Hamashima, Y.; Sodeoka, M. Angew. Chem., Int. Ed. 2007,
46, 5435–5439. (c) Perseghini, M.; Massaccesi, M.; Liu, Y.; Togni, A.
Tetrahedron 2006, 62, 7180–7190. (d) Beeson, T. D.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2005, 127, 8826–8828. (e) Shibata, N.; Kohno, J.; Takai,
K.; Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem.,
Int. Ed. 2005, 44, 4204–4207. (f) Pihko, P. M. Angew. Chem., Int. Ed.
2006, 45, 544–547. (g) Steiner, D. D.; Mase, N.; Barbas III, C. F. Angew.
Chem., Int. Ed. 2005, 44, 3706–3710. (h) Hamashima, Y.; Suzuki, T.;
Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164–
10165. (i) Marigo, M.; Feilenbach, D.; Braunton, A.; Kjaersgaard, A.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703–3706. (j) Ma,
J.-A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007–1011. (k) Kim,
D. Y.; Park, E. J. Org. Lett. 2002, 4, 545–547. (l) Hamashima, Y.; Yagi,
K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124,
14530–14531. (m) Hamashima, Y.; Takano, H.; Hotta, D.; Sodeoka, M.
Org. Lett. 2003, 5, 3225–3228. (n) Hintermann, L.; Togni, A. Angew.
Chem., Int. Ed. 2000, 39, 4359–4362.
trans-(PPh3)2PdCl2 in THF at -78 °C, and were quenched with
nucleophile after 6-15 h; yield for pure product based on limiting
reagent. An excess of NuH was used except: b Run using 1.1 equiv
NuH; c Run using 0.8 equiv NuH. d Correlation confirmed sense of
induction, see Supporting Information. e BQ was used instead of BQd
and yields the (S)-enantiomer. f 3-[N-(p-Cl-Benzoyl)-(5-MeO-2-Me-
indol)]. g Diastereomeric excess (de) is measured. *Product is depicted.
affords amides; accordingly, thioesters can be readily accessed. In
a representative example, work up with L-phenylalanine ethyl ester
produces the fluorinated peptide 2b in 68% yield (>99% diaster-
eomeric excess [de]).
(3) In a pioneering example, Sodeoka et al. form derivatizable, optically
enriched R-fluoroarylacetic acid imides using a chiral, Ni(II)-based catalyst
system, see ref 2b.
(4) Abraham, C. J.; Paull, D. H.; Bekele, T.; Scerba, M. T.; Lectka, T. J. Am.
ja806818a.
From a mechanistic standpoint, the absence of observable concen-
trations of free, protonated dibenzenesulfonimide during the course
of the reaction suggests that it indeed reacts to form intermediate 5.
This leads us to propose a mechanism (eq 3), which is also based on
our previous data on metal-bound zwitterionic ketene enolates.4
Fluorination of the dually activated enolate leads to an acyl ammonium
(5) For a brief review on the chemistry of NFSi, see: Rostami, A. Synlett 2007,
18, 2924–2925.
(6) (a) France, S.; Weatherwax, A.; Lectka, T. Eur. J. Org. Chem. 2005, 475–
479. (b) France, S.; Wack, H.; Taggi, A. E.; Hafez, A. M.; Wagerle, T. R.;
Shah, M. H.; Dusich, C. L.; Lectka, T. J. Am. Chem. Soc. 2004, 126, 4245–
4255. (c) Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T.
Org. Lett. 2001, 3, 2049–2051. (d) Wack, H.; Taggi, A. E.; Hafez, A. M.;
Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2001, 123, 1531–1532.
(7) Evidence suggests that N-acyl-N,N-bis(sulfonyl)amines are strong, but
moisture sensitive, acylating agents, see: Blaschette, A.; Safari, F. Chem.-
Zeit. 1988, 112, 313–315.
(8) Screening of an early transition metal salt, Sc(OTf)3, produced only a
marginal increase in yield over the base reaction and lower ee (96%).
(9) “Dppp” is an abbreviation for 1,3-bis(diphenylphosphino)propane.
(10) Under standard reaction conditions, simple aliphatic acid halides react very
slowly; further studies are addressing this low reactivity.
(11) Sheng, H.; Shao, J.; Kirkland, S. C.; Isakson, P.; Coffey, R. J.; Morrow,
J.; Beauchamp, R. D.; DuBois, R. N. J. Clin. InVest. 1997, 99, 2254–2259.
(12) For a recent review of isoquinoline alkaloid chemistry, see: Chrzanowska,
M.; Rozwadowska, M. D. Chem. ReV. 2004, 104, 3341–3370.
salt that reacts with the liberated dibenzenesulfonimide anion to form
the active amide intermediate 5. As established, this species effects a
transacylation with added nucleophiles to generate the final products
in high ee and excellent yields.
JA807792C
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17261