Notes and references
1 For selected recent examples, see: (a) A. Venturelli, D. Tondi, L.
Cancian, F. Morandi, G. Cannazza, B. Segatore, F. Prati, G.
Amicosante, B. K. Shoichet and M. P. Costi, J. Med. Chem., 2007,
50, 5644–5654; (b) R. Romagnoli, P. G. Baraldi, M. D. Carrion, C. L.
Cara, D. Preti, F. Fruttarolo, M. G. Pavani, M. A. Tabrizi, M.
Tolomeo, S. Grimaudo, A. D. Cristina, J. Balzarini, J. A. Hadfield,
A. Brancale and E. Hamel, J. Med. Chem., 2007, 50, 2273–2277; (c) J.
Fournier dit Chabert, B. Marquez, L. Neville, L. Joucla, S. Brous-
sous, P. Bouhours, E. David, S. Pellet-Rostaing, B. Marquet, N.
Moreau and M. Lemairea, Bioorg. Med. Chem., 2007, 15, 4482–4497;
(d) D. J. Witter, S. Belvedere, L. Chen, J. P. Secrist, R. T. Mosley and
T. A. Miller, Bioorg. Med. Chem. Lett., 2007, 17, 4562–4567.
2 For selected recent examples, see: (a) J. Gao, R. Li, L. Li, Q. Meng,
H. Jiang, H. Li and W. Hu, Adv. Mater., 2007, 19, 3008–3011;
(b) M.-S. Kim, B.-K. Choi, T.-W. Lee, D. Shin, S. K. Kang,
J. M. Kim, S. Tamura and T. Noh, Appl. Phys. Lett., 2007, 91,
251111-1–251111-3; (c) V. A. Bren, A. D. Dubonosov, V. I. Minkin,
A. V. Tsukanov, T. N. Gribanova, E. N. Shepelenko, Y. V. Revinsky
and V. P. Rybalkin, J. Phys. Org. Chem., 2007, 20, 917–928.
3 For selected recent examples, see: (a) K. Kobayashi, D.
Nakamura, S. Fukamachi and H. Konishi, Heterocycles, 2008,
75, 919–924; (b) S. Yoshida, H. Yorimitsu and K. Oshima, Org.
Lett., 2007, 9, 5573–5576; (c) H. J. Jeong, U. Y. Yoon, S. H. Jang,
U.-A. Yoo, S. N. Kim, B. T. Truong, S. C. Shin, Y.-J. Yoon, O. M.
Singh and S.-G. Lee, Synlett, 2007, 1407–1410; (d) C. T. Bui and B.
L. Flynn, J. Comb. Chem., 2006, 8, 163–167; (e) C. F. Roberts and
R. C. Hartley, J. Org. Chem., 2004, 69, 6145–6148; (f) D. Allen, O.
Callaghan, F. L. Cordier, D. R. Dobson, J. R. Harris, T. M.
Hotten, W. M. Owton, R. E. Rathmell and V. A. Wood, Tetra-
hedron Lett., 2004, 45, 9645–9647; (g) S.-M. Yang, J.-J. Shie, J.-M.
Fang, S. K. Nandy, H.-Y. Chang, S.-H. Lu and G. Wang, J. Org.
Chem., 2002, 67, 5208–5215; (h) B. L. Flynn, P. Verdier-Pinard and
E. Hamel, Org. Lett., 2001, 3, 651–654; (i) R. C. Larock and D.
Yue, Tetrahedron Lett., 2001, 42, 6011–6013.
4 (a) I. Nakamura, T. Sato and Y. Yamamoto, Angew. Chem., Int.
Ed., 2006, 45, 4473–4475; (b) M. C. Willis, D. Taylor and A. T.
Gillmore, Tetrahedron, 2006, 62, 11513–11520; (c) N. Arnau, M.
Moreno-Manas and R. Pleixats, Tetrahedron, 1993, 47,
11019–11028.
5 (a) K. Inamoto, T. Saito, M. Katsuno, T. Sakamoto and K. Hiroya,
Org. Lett., 2007, 9, 2931–2934; (b) K. Inamoto, M. Katsuno, T.
Yoshino, Y. Arai, K. Hiroya and T. Sakamoto, Tetrahedron, 2007,
63, 2695–2711; (c) K. Hiroya, S. Matsumoto, M. Ashikawa, K.
Ogiwara and T. Sakamoto, Org. Lett., 2006, 8, 5349–5352.
6 The use of a reduced amount of palladium catalyst, such as 5
mol% PdCl2, led to a decreased yield (44% of 2a along with 27%
of 3a). See the ESIw for the detailed results of screening.
7 (a) W. E. Fristad and J. R. Peterson, Synth. Commun., 1985, 15, 1–5;
(b) T. J. Wallace, J. Am. Chem. Soc., 1964, 86, 2018–2021; (c) C. N.
Yiannios and J. V. Karabinos, J. Org. Chem., 1963, 28, 3246–3248.
8 (a) J. B. Arterburn, M. C. Perry, S. L. Nelson, B. R. Dible and M.
S. Holguin, J. Am. Chem. Soc., 1997, 119, 9309–9310; (b) A.
Fig. 1 A plausible reaction mechanism.
Scheme 4 The conversion of disulfide 3a into benzo[b]thiophene 2a.
disulfides. The palladium catalyst may also be involved in this
oxidation step because the heating of 1a in DMSO in the
absence of palladium resulted in the formation of disulfide 3a
in only an 11% yield (Table 1, entry 11).8a,b,9 Disulfide 3,
formed from the corresponding thioenol, 1, undergoes oxida-
tive addition to palladium, leading to complex 4.10 Electro-
philic attack of the aryl ring, either at the palladium centre
(Fig. 1; path A, 4 to 5) or at the sulfur atom (path B, 4 to 2),
may occur next. From the former pathway, the formation of
six-membered palladacycle 5, followed by reductive elimina-
tion, provides benzo[b]thiophene 2. The direct formation of 2,
along with starting thioenol 1 and reduced palladium, occurs
in the latter pathway. Direct C–H activation of thioenol 1 is
unlikely, although we cannot completely rule out this mecha-
nism at present.
The above-proposed mechanism complements the following
observations: (1) the formation of a small amount of disulfide
compound was observed in most cases, (2) oxidants are not
necessary for this process and (3) isolated disulfide 3a can be
converted into benzo[b]thiophene 2a in the presence of a
palladium catalyst (Scheme 4).11,12
Cervilla, A. Corma, V. Fornes, E. Llopis, P. Palanca, F. Rey
´
and A. Ribera, J. Am. Chem. Soc., 1994, 116, 1595–1596; (c) T.
Aoda, T. Akasaka, N. Furukawa and S. Oae, Bull. Chem. Soc.
Jpn., 1976, 49, 1441–1442.
In summary, we have developed a novel method for the
direct synthesis of multi-substituted benzo[b]thiophenes
through the unprecedented palladium-catalysed cyclisation
of thioenols. The procedure presented here employs a simple
catalyst system, in which PdCl2 or PdCl2(cod) is the sole metal
source required, and where additional redox-active reagents
are not necessary. For this transformation, we postulate a
reaction mechanism in which palladium might be playing a
dual role, both in the formation of disulfides and in the
subsequent cyclisation. This direct high-yielding and atom-
economical procedure for the synthesis of benzo[b]thiophenes
will find applications in a range of areas, including medicinal
and materials chemistry. Further investigations to expand the
substrate scope, as well as to clarify the precise reaction
mechanism, are now in progress.
9 Some metal compounds are also known to be involved in the
oxidation of thiols. For selected examples, see: (a) M. Kirihara, K.
Okubo, T. Uchiyama, Y. Kato, Y. Ochiai, S. Matsushita, A.
Hatano and K. Kanamori, Chem. Pharm. Bull., 2004, 52,
625–627; (b) N. Iranpoor and B. Zeynizadeh, Synthesis, 1999,
49–50; (c) T. J. Wallace, J. Org. Chem., 1966, 31, 1217–1221.
10 For selected recent examples of the oxidative addition of S–S
bonds to Pd(0), see: (a) V. P. Ananikov, M. A. Kabeshov, I. P.
Beletskaya, V. N. Khrustalev and M. Y. Antipin, Organometallics,
2005, 24, 1275–1283; (b) J. M. Gonzales, D. G. Musaev and K.
Morokuma, Organometallics, 2005, 24, 4908–4914.
11 Interestingly, Pd(0) has no catalytic activity for this transfor-
mation; only 4% of 2a, along with 92% of recovered 3a, was
obtained in the presence of 20 mol% Pd2(dba)3.
12 Either Pd(0) and Pd(II), Pd(II) and Pd(IV), or both mechanisms can
be operating during this process. Detailed mechanistic studies are
currently under way.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5529–5531 | 5531