ORGANIC
LETTERS
2009
Vol. 11, No. 1
229-231
Synthesis of Indene Derivatives via
Electrophilic Cyclization
Zulfiqar Ali Khan and Thomas Wirth*
School of Chemistry, Cardiff UniVersity, Park Place, Cardiff CF10 3AT, U.K.
Received October 28, 2008
ABSTRACT
3-Iodo-1H-indene derivatives are synthesized by iodonium-promoted 5-endo-dig carbocyclization of 2-substituted ethynylmalonates. Various
2-substituted ethynylmalonates bearing aryl-, alkyl- and ether-protected propargyl alcohols were successfully converted to cyclized products.
Their use in subsequent reactions as substrate and catalyst was investigated.
The indene moiety is present in a large number of drug
candidates possessing interesting biological activities.1 They
are also used as ligands in metallocene complexes, especially
group IV metallocene complexes used in the area of catalytic
olefin polymerization.2 Therefore, a number of synthetic
approaches toward the construction of indene ring systems
have been developed such as the reduction or dehydration
of indanone,3 the cyclization of substituted 1,3-butadienes
in the presence of Lewis acids,4 or the ring expansion of
suitably substituted cyclopropenes.5 A variety of transition
metal complexes, e.g., Pd,6 Ni,7 and Co,8 have been used to
synthesize indenes via carboannulations of alkynes, but there
are only limited reports for the synthesis of haloindenes, such
as the bromination of indane or indene derivatives9 and
hydrogen iodide mediated cyclizations of o-alkynylstyrenes.10
Roussel et al. reported the synthesis of 3-chloroindenes by
trifluoromethanesulfonicacidcatalyzedbenzoylationof2-meth-
yl-2-butene.11 Sauers et al. reported the synthesis of fluor-
oindenes by rearrangement of diazirines via photolysis.12
Recently, the synthesis of 3-iodo-1H-indene derivatives via
Lewis acid catalyzed Friedel-Crafts cyclizations of iodinated
allylic alcohols was published.13 Also stereoselective cy-
clizations have been developed using iodine electrophiles.14
Several of these classical methods have some drawbacks in
the preparation of indenes such as long reaction sequences,
use of expensive transition metals, strong acidic conditions,
and less tolerance for sensitive organic functionalities.
However, haloindenes are important derivatives that provide
(1) (a) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami,
Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T. J. Med. Chem. 1996, 39,
3636. (b) Palm, J.; Boegesoe, K. P.; Liljefors, T. J. Med. Chem. 1993, 36,
2878. (c) Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. J. Med.
Chem. 2005, 48, 5989–6003. (d) Witiak, D. T.; Kakodkar, S. V.; Brunst,
G. E.; Baldwin, J. R.; Rahwan, R. G. J. Med. Chem. 1978, 21, 1313. (e)
Gao, H.; Katzenellenbogen, J. A.; Garg, R.; Hansch, C. Chem. ReV. 1999,
99, 723.
(7) (a) Deng, R.; Sun, L.; Li, Z. Org. Lett. 2007, 9, 5207. (b) Rayabarapu,
D. K.; Cheng, C.-H. Chem. Commun. 2002, 942. (c) Rayabarapu, D. K.;
Yang, C.-H.; Cheng, C.-H. J. Org. Chem. 2003, 68, 6726.
(8) (a) Chang, K.-J.; Rayabarapu, D. K.; Cheng, C.-H. Org. Lett. 2003,
5, 3963. (b) Chang, K.-J.; Rayabarapu, D. K.; Cheng, C.-H. J. Org. Chem.
2004, 69, 4781.
(2) Alt, H. G.; Koeppl, A. Chem. ReV. 2000, 100, 1205.
(3) Prough, J. D.; Alberts, A. W.; Deana, A. A.; Gilfillian, J. L.; Huff,
J. W.; Smith, R. L.; Wiggins, J. M. J. Med. Chem. 1990, 33, 758.
(4) Sun, X.; Izumi, K.-J.; Hu, C.-Q.; Lin, G.-Q. Chin. J. Chem. 2006,
24, 430.
(9) Tutar, A.; Cakmak, O.; Balci, M. Tetrahedron 2001, 57, 9759.
(10) Saito, S.; Homma, M.; Gevorgyan, V.; Yamamoto, Y. Chem. Lett.
2000, 722.
(5) Yoshida, H.; Kato, M.; Ogata, T. J. Org. Chem. 1985, 50, 1145.
(6) (a) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc.
1999, 121, 3545. (b) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y.
Tetrahedron Lett. 1999, 40, 4089. (c) Zhang, D.; Liu, Z.; Yum, E. K.;
Larock, R. C. J. Org. Chem. 2007, 72, 251. (d) Zhang, D.; Yum, E. K.;
Liu, Z.; Larock, R. C. Org. Lett. 2005, 7, 4963. (e) Bi, H.-P.; Liu, X.-Y.;
Gou, F.-R.; Guo, L.-N.; Duan, X.-H.; Liang, Y.-M. Org. Lett. 2007, 9, 3527.
(11) Roussel, C.; Rajoharison, H. G.; Bizzari, L.; Shaimi, L. J. Org.
Chem. 1988, 53, 683.
(12) Moss, R. A.; Xue, S.; Sauers, R. R. J. Am. Chem. Soc. 1996, 118,
10307.
(13) Zhou, X.; Zhang, H.; Xie, X.; Li, Y. J. Org. Chem. 2008, 73, 3958.
(14) French, A. N.; Bissmire, S.; Wirth, T. Chem. Soc. ReV. 2004, 33,
354.
10.1021/ol8024956 CCC: $40.75
Published on Web 12/02/2008
2009 American Chemical Society