electron-donating and/or electron-withdrawing properties on
terminal sites.7
The molecules 7-9 were synthesized14 by Sonogashira
couplings. A single crystal of 5 (Figure 1) was grown from
Triphenylamine-based molecules 1-4 exhibit enhanced
nonlinear responses,8 the three N-C bonds in triphenylamine
and its derivatives having been shown9,10 to be essentially
in one common plane. This supports π conjugation through
a lone pair of electrons on the nitrogen atom.11 Extension
of π conjugation over the entire molecular framework may,
however, be poor as a result of relatively large dihedral
angles between the phenyl ring plane and the plane of the
N-bonded carbon atoms.8 Recent research has verified that
molecular planarity is an important positive factor for
enhancing TPA cross-sections.12 The methylene units in
bridged triphenylamine 513 are expected to hold the three
phenyl rings in a locked, planar manner compared to those
in triphenylamine. In this work a series of a dimer 7 and
two dendrimers 8 and 9 incorporating two to six units of
bridged 5 were synthesized. They show TPA cross-sections
remarkably higher than their triphenylamine counterparts and
hence are more promising models in the field of nonlinear
optics.
Figure 1. X-ray crystallographic structure of 5 (C ) gray; N )
dark gray; H atoms are omitted for clarity).
hexane. The crystal belongs to the monoclinic system with
a space group of P21/c. There are two independent molecules
per asymmetric unit with irregular propeller-like geometries.
The central nitrogen atoms are found to have small deviations
from the plane of the surrounding carbon atoms with
distances of 0.15 and 0.29 Å, respectively. Mean values of
the C-N-C bond angle in the two molecules are, however,
118.5° and 119.0°, respectively, corresponding to an sp2-
hybridized nitrogen favoring intramolecular p-π interactions
between nitrogen and its adjacent phenyl rings. In addition
the dihedral angles between phenyl rings and the plane of
(7) (a) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow,
S.; Hu, Z. Y.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Th-
ayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J. L. J. Am. Chem.
Soc. 2000, 122, 9500–9510. (b) Cho, B. R.; Piao, M. J.; Son, K. H.; Lee,
S. H.; Yoon, S. J.; Jeon, S. J.; Cho, M. Chem. Eur. J. 2002, 8, 3907–3916.
(c) Hua, J. L.; Li, B.; Meng, F. S.; Ding, F.; Qian, S. X.; Tian, H. Polymer
2004, 45, 7143–7149. (d) Drobizhev, M.; Karoti, A.; Dzenis, Y.; Rebane,
A. J. Phys. Chem. B 2003, 107, 7540–7543. (e) Ranasinghe, M. I.;
Varnavski, O. P.; Pawlas, J.; Hauck, S. L.; Louie, J.; Hartwig, J. F.; Goodson,
T. J. Am. Chem. Soc. 2002, 124, 6520–6521. (f) Samoc, M.; Morrall, J. P.;
Dalton, G. T.; Cifuentes, M. P.; Humphrey, M. G. Angew. Chem., Int. Ed.
2007, 46, 731–33. (g) Kannan, R.; He, G. S.; Yuan, L. X.; Xu, F. M.; Prasad,
P. N.; Dombroskie, A. G.; Reinhardt, B. A.; Baur, J. W.; Vaia, R. A.; Tan,
L. S. Chem. Mater. 2001, 13, 1896–1904.
(8) (a) Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi, H.; Cha, M.
Chem. Mater. 2004, 16, 456–465. (b) Yan, Y. X.; Tao, X. T.; Sun, Y. H.;
Xu, G. B.; Wang, C. K.; Yang, T. X.; Wu, Y. Z.; Ren, Y.; Jiang, M. H.
Mater. Chem. Phys. 2005, 90, 139–143.
(9) Sobolev, A. N.; Belsky, V. K.; Romm, I. P.; Chernikova, N. Y.;
Guryanova, E. N. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1985,
41, 967–971.
(10) Sander, R.; Stumpflen, V.; Wendorff, J. H.; Greiner, A. Macro-
molecules 1996, 29, 7705–7708.
(11) (a) Wang, X. M.; Wang, D.; Zhou, G. Y.; Yu, W. T.; Zhou, Y. F.;
Fang, Q.; Ji, M. H. J. Mater. Chem. 2001, 11, 1600–1605. (b) Lupton,
J. M.; Samuel, I. D.; Burn, P. L.; Mukamel, S. J. Phys. Chem. B 2002,
106, 7647–7653. (c) Yang, J. S.; Chiou, S. Y.; Liau, K. L. J. Am. Chem.
Soc. 2002, 124, 2518–2527. (d) Yu, G.; Liu, Y. Q.; Wu, X.; Zheng, M.;
Bai, F. L.; Zhu, D. B.; Jin, L. P.; Wang, M. Z.; Wu, X. N. Appl. Phys. Lett.
1999, 74, 2295–2297.
(12) (a) Drobizhev, M.; Rebane, A.; Suo, Z.; Spangler, C. W. J. Lumin.
2005, 111, 291–305. (b) Wei, P.; Bi, X. D.; Wu, Z.; Xu, Z. Org. Lett. 2005,
7, 3199–3202. (c) Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard,
A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L. X.; He, G. S.; Prasad, P. N. Chem.
Mater. 1998, 10, 1863–1874.
(13) (a) Hellwinkel, D.; Melan, M. Chem. Ber. 1971, 104, 1001–1016.
(b) Hellwinkel, D.; Aulmich, G.; Melan, M. Chem. Ber. 1974, 107, 616–
627. (c) Hellwinkel, D.; Schmidt, W. Chem. Ber. 1980, 113, 358–384.
(14) Synthesis of monomers 5 and 10 is described in Supporting
Information.
2
Org. Lett., Vol. 11, No. 1, 2009