Organic Letters
Letter
Kunishima, M. Org. Lett. 2012, 14, 5026. (l) Pascal, R. A., Jr.; Mathai,
M. S.; Shen, X. F.; Ho, D. M. Angew. Chem., Int. Ed. 2001, 40, 4746.
(4) (a) Heemstra, J. R., Jr.; Walsh, C. T.; Sattely, E. S. J. Am. Chem.
Soc. 2009, 131, 15317.
(5) For recent reports on synthetic methods involving amino acids,
see: (a) Wang, H. Q.; Xu, W. T.; Xin, L. L.; Liu, W. M.; Wang, Z. Q.;
Xu, K. J. Org. Chem. 2016, 81, 3681. (b) Joshi, A.; Chandra Mohan, D.;
Adimurthy, S. Org. Lett. 2016, 18, 464. (c) Mai, D. N.; Baxter, R. D.
Org. Lett. 2016, 18, 3738.
In conclusion, we demonstrate a straightforward pyridine
synthesis from three amino acids. This new reaction reveals
unusual cross- and homo-trimerization behaviors of amino
acids which have potential synthetic utilities. This trans-
formation, driven by nonfossil carbon renewable resources,
features high chemoselectivity and good compatibility and is
user-friendly. Mechanistically, I2 activates amino acids in situ via
decarboxylation and deamination reactions to afford α,β-
unsaturated aldehyde intermediate. I2 further assists the
subsequent tandem process as a terminal oxidant to achieve
consecutive C−C and C−N bond formations. 2,3,5-Trisub-
stituted pyridines with diversified substitution patterns could be
readily prepared.
(6) Xiang, J. C.; Wang, M.; Cheng, Y.; Wu, A. X. Org. Lett. 2016, 18,
24 and references cited therein.
(7) For recent reports on pyridine synthesis, see: (a) Ye, F.; Haddad,
M.; Ratovelomanana-Vidal, V.; Michelet, V. Org. Lett. 2017, 19, 1104.
(b) Yi, Y. K.; Zhao, M. N.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Green
Chem. 2017, 19, 1023. (c) Hilf, J. A.; Holzwarth, M. S.; Rychnovsky, S.
D. J. Org. Chem. 2016, 81, 10376. (d) Li, Z. Y.; Huang, X. Q.; Chen, F.;
Zhang, C.; Wang, X. Y.; Jiao, N. Org. Lett. 2015, 17, 584. (e) Wu, K.;
Huang, Z. L.; Liu, C.; Zhang, H.; Lei, A. W. Chem. Commun. 2015, 51,
2286. (f) Yoshida, M.; Mizuguchi, T.; Namba, K. Angew. Chem., Int. Ed.
2014, 53, 14550. (g) Michlik, S.; Kempe, R. Angew. Chem., Int. Ed.
2013, 52, 6326. (h) Song, Z. D.; Huang, X.; Yi, W. B.; Zhang, W. Org.
Lett. 2016, 18, 5640. (i) Majee, D.; Biswas, S.; Mobin, S. M.; Samanta,
S. Org. Biomol. Chem. 2017, 15, 3286. (j) Hirai, S.; Horikawa, Y.;
Asahara, H.; Nishiwaki, N. Chem. Commun. 2017, 53, 2390.
(k) Guchhait, S. K.; Hura, N.; Sinha, K.; Panda, D. RSC Adv. 2017,
7, 8323.
(8) (a) Zhang, J. T.; Wang, Z. T.; Wang, Y.; Wan, C. F.; Zheng, X.
Q.; Wang, Z. Y. Green Chem. 2009, 11, 1973. (b) Hruszkewycz, D. P.;
Miles, K. C.; Thiel, O. R.; Stahl, S. S. Chem. Sci. 2017, 8, 1282.
(9) (a) Wypych, J. C.; Nguyen, T. M.; Nuhant, P.; Benechie, M.;
Marazano, C. Angew. Chem., Int. Ed. 2008, 47, 5418. (b) Usuki, T.;
Sugimura, T.; Komatsu, A.; Koseki, Y. Org. Lett. 2014, 16, 1672.
(c) Yu, L. B.; Chen, D.; Li, J.; Ramirez, J.; Wang, P. G.; Bott, S. G. J.
Org. Chem. 1997, 62, 208.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, product characterization, crys-
1
tallographic data, and H and 13C spectra (PDF)
X-ray data for compound 3ba (CIF)
X-ray data for compound 5b (CIF)
X-ray data for compound 7 (CIF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (Grant Nos. 21472056 and 21602070) and the
Fundamental Research Funds for the Central Universities
(CCNU15ZX002 and CCNU16A05002) for financial support.
This work was also supported by the 111 Project B17019. We
acknowledge an Excellent Doctoral Dissertation Cultivation
Grant from Central China Normal University (2015YBYB089).
REFERENCES
■
(1) (a) Hardesty, J. H.; Koerner, J. B.; Albright, T. A.; Lee, G. Y. J.
Am. Chem. Soc. 1999, 121, 6055. (b) Reichart, T. M.; Baksh, M. M.;
Rhee, J. K.; Fiedler, J. D.; Sligar, S. G.; Finn, M. G.; Zwick, M. B.;
Dawson, P. E. Angew. Chem., Int. Ed. 2016, 55, 2688.
(2) McGuinness, D. S. Chem. Rev. 2011, 111, 2321.
(3) (a) Lipschutz, M. I.; Chantarojsiri, T.; Dong, Y. Y.; Tilley, T. D. J.
Am. Chem. Soc. 2015, 137, 6366. (b) Zhou, P.; Huang, L. B.; Jiang, H.
F.; Wang, A. Z.; Li, X. W. J. Org. Chem. 2010, 75, 8279. (c) Paul, F.;
Moulin, S.; Piechaczyk, O.; Le Floch, P.; Osborn, J. A. J. Am. Chem.
Soc. 2007, 129, 7294. (d) Saaidi, P. L.; Guyonnet, M.; Jeanneau, E.;
Fleurat-Lessard, P.; Hasserodt, J. J. Org. Chem. 2008, 73, 1209.
(e) Carreno, M. C.; Ribagorda, M. Org. Lett. 2003, 5, 2425.
̃
(f) Kuninobu, Y.; Matsuki, T.; Takai, K. Org. Lett. 2010, 12, 2948.
(g) Cairns, T. L.; Larchar, A. W.; McKusick, B. C. J. Am. Chem. Soc.
1952, 74, 5633. (h) Ibad, M. F.; Langer, P.; Reiß, F.; Schulz, A.;
́ ́
Villinger, A. J. Am. Chem. Soc. 2012, 134, 17757. (i) Perez, D.; Guitian,
E. Chem. Soc. Rev. 2004, 33, 274. (j) Wang, M. W.; Jeng, R. J.; Lin, C.
H. Macromolecules 2015, 48, 2417. (k) Yamada, K.; Fujita, H.;
D
Org. Lett. XXXX, XXX, XXX−XXX