Y. Yamada et al. / Bioorg. Med. Chem. Lett. 20 (2010) 354–358
357
Figure 2. JR-FL (R5, Sub B) chronically infected PM1 cells were preincubated with 100 lM of a CD4 mimic or sCD4 (11 nM) for 15 min, and then incubated with an anti-HIV-1
mAb, 4C11, at 4 °C for 15 min. The cells were washed with PBS, and fluorescein isothiocyanate (FITC)-conjugated goat anti-human IgG antibody was used for antibody-
staining. Flow cytometry data for the binding of 4C11 (green lines) to the Env-expressing cell surface in the presence of sCD4 or a CD4 mimic are shown among gated PM1
cells along with a control antibody (anti-human CD19: black lines). Data are representative of the results from a minimum of two independent experiments. The number at
the top of each graph shows the mean fluorescence intensity (MFI) of the antibody 4C11.
Health and Labour Sciences Research Grants from Japanese Minis-
try of Health, Labor, and Welfare.
Table 2
Combination indices (CI) for compound 2 or sCD4 and a CXCR4 antagonist, T140,
against an HIV IIIB strain
CI values at different ICa
References and notes
Combination
HIV strain
IC50
IC75
IC90
1. Mitsuya, H.; Erickson, J. In Textbook of AIDS Medicine; Merigan, T. C., Bartlett, J.
G., Bolognesi, D., Eds.; Williams & Wilkins: Baltimore, 1999; pp 751–780.
2. Chan, D. C.; Kim, P. S. Cell 1998, 93, 681.
2 + T140
sCD4 + T140
IIIB
IIIB
0.786
0.705
0.713
0.528
0.655
0.400
3. (a) Alkhatib, G.; Combadiere, C.; Broder, C. C.; Feng, Y.; Kennedy, P. E.; Murphy,
P. M.; Berger, E. A. Science 1996, 272, 1955; (b) Choe, H.; Farzan, M.; Sun, Y.;
Sullivan, N.; Rollins, B.; Ponath, P. D.; Wu, L.; Mackay, C. R.; LaRosa, G.;
Newman, W.; Gerard, N.; Gerard, C.; Sodroski, J. Cell 1996, 85, 1135; (c) Deng, H.
K.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Marzio, P. D.;
Marmon, S.; Sutton, R. E.; Hill, C. M.; Davis, C. B.; Peiper, S. C.; Schall, T. J.;
Littman, D. R.; Landau, N. R. Nature 1996, 381, 661; (d) Doranz, B. J.; Rucker, J.;
Yi, Y. J.; Smyth, R. J.; Samson, M.; Peiper, S. C.; Parmentier, M.; Collman, R. G.;
Doms, R. W. Cell 1996, 85, 1149; (e) Dragic, T.; Litwin, V.; Allaway, G. P.; Martin,
S. R.; Huang, Y.; Nagashima, K. A.; Cayanan, C.; Maddon, P. J.; Koup, R. A.;
Moore, J. P.; Paxton, W. A. Nature 1996, 381, 667.
a
The multiple-drug effect analysis reported by Chou et al. was used to analyze
the effects of combinational uses of compounds.18 CI <0.9: synergy, 0.9 < CI < 1.1:
additivity, CI >1.1: antagonism.
(Table 2).15 Compound 2 showed a highly remarkable synergistic
anti-HIV activity with a co-receptor CXCR4 antagonist, T140,8a
against an X4-HIV-1 strain, IIIB at various IC values (IC50, IC75 and
IC90). However, sCD4 exhibited a higher synergistic effect (lower CI
values) with T140 (Table 2). The interaction of sCD4 or a CD4 mimic
with gp120 would expose the co-receptor-binding site of gp120, and
the co-receptor CXCR4 could then easily approach gp120. Thus, an
inhibitory effect of a CXCR4 antagonist would be meaningful, and a
significant synergistic effect might also be brought about by a com-
bination of sCD4 or a CD4 mimic and T140.
In summary, a series of CD4 mimic compounds were synthe-
sized and evaluated for their anti-HIV activity. Several compounds
showed significant anti-HIV activity with relatively low cytotoxic-
ity. SAR studies showed that a certain level of size and electron-
withdrawing ability of the substituents at the p-position of the
phenyl ring are suitable for potent anti-HIV activity. In addition,
the treatment of Env-expressing cells with several CD4 mimicking
compounds causes a conformational change, exposing the co-
receptor-binding site of gp120 externally. Thus, a CD4 mimic
exhibited a remarkable synergistic effect with a co-receptor antag-
onist. These compounds are essential probes directed to the dy-
namic supramolecular mechanism of HIV entry, and important
leads for the cocktail therapy of AIDS.
4. Feng, Y.; Broder, C. C.; Kennedy, P. E.; Berger, E. A. Science 1996, 272, 872.
5. Wild, C. T.; Greenwell, T. K.; Matthews, T. J. AIDS Res. Hum. Retroviruses 1993, 9,
1051.
6. (a) Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.;
Rickett, G.; Smith-Burchnell, C.; Napier, C.; Webster, R.; Armour, D.; Price, D.;
Stammen, B.; Wood, A.; Perros, M. Antimicrob. Agents Chemother. 2005, 49,
4721; (b) Price, D. A.; Armour, D.; De Groot, M.; Leishman, D.; Napier, C.; Perros,
M.; Stammen, B. L.; Wood, A. Bioorg. Med. Chem. Lett. 2006, 16, 4633.
7. (a) Cahn, P.; Sued, O. Lancet 2007, 369, 1235; (b) Grinsztejn, B.; Nguyen, B.-Y.;
Katlama, C.; Gatell, J. M.; Lazzarin, A.; Vittecoq, D.; Gonzalez, C. J.; Chen, J.;
Harvey, C. M.; Isaacs, R. D. Lancet 2007, 369, 1261.
8. (a) Tamamura, H.; Xu, Y.; Hattori, T.; Zhang, X.; Arakaki, R.; Kanbara, K.;
Omagari, A.; Otaka, A.; Ibuka, T.; Yamamoto, N.; Nakashima, H.; Fujii, N.
Biochem. Biophys. Res. Commun. 1998, 253, 877; (b) Fujii, N.; Oishi, S.;
Hiramatsu, K.; Araki, T.; Ueda, S.; Tamamura, H.; Otaka, A.; Kusano, S.;
Terakubo, S.; Nakashima, H.; Broach, J. A.; Trent, J. O.; Wang, Z.; Peiper, S. C.
Angew. Chem., Int. Ed. 2003, 42, 3251; (c) Tanaka, T.; Nomura, W.; Narumi, T.;
Esaka, A.; Oishi, S.; Ohashi, N.; Itotani, K.; Evans, B. J.; Wang, Z.; Peiper, S. C.;
Fujii, N.; Tamamura, H. Org. Biomol. Chem. 2009, 7, 3805.
9. Otaka, A.; Nakamura, M.; Nameki, D.; Kodama, E.; Uchiyama, S.; Nakamura, S.;
Nakano, H.; Tamamura, H.; Kobayashi, Y.; Matsuoka, M.; Fujii, N. Angew. Chem.,
Int. Ed. 2002, 41, 2937.
10. (a) Zhao, Q.; Ma, L.; Jiang, S.; Lu, H.; Liu, S.; He, Y.; Strick, N.; Neamati, N.;
Debnath, A. K. Virology 2005, 339, 213; (b) Schön, A.; Madani, N.; Klein, J. C.;
Hubicki, A.; Ng, D.; Yang, X.; Smith, A. B., III; Sodroski, J.; Freire, E. Biochemistry
2006, 45, 10973; (c) Madani, N.; Schön, A.; Princiotto, A. M.; LaLonde, J. M.;
Courter, J. R.; Soeta, T.; Ng, D.; Wang, L.; Brower, E. T.; Xiang, S.-H.; Do Kwon, Y.;
Huang, C.-C.; Wyatt, R.; Kwong, P. D.; Freire, E.; Smith, A. B., III; Sodroski, J.
Structure 2008, 16, 1689; (d) Haim, H.; Si, Z.; Madani, N.; Wang, L.; Courter, J.
R.; Princiotto, A.; Kassa, A.; DeGrace, M.; McGee-Estrada, K.; Mefford, M.;
Gabuzda, D.; Smith, A. B., III; Sodroski, J. ProS Pathogens 2009, 5, 1.
11. The structure of compound 2 was built in Sybyl and minimized with the
MMFF94 force field and partial charges. (see: Halgren, T. A. J. Comput. Chem.
1996, 17, 490.) Docking was then performed using FlexSIS through its SYBYL
Acknowledgments
This work was supported by Mitsui Life Social Welfare Founda-
tion, Grant-in-Aid for Scientific Research from the Ministry of Edu-
cation, Culture, Sports, Science, and Technology of Japan, and