Sequential Rh-Catalyzed Addition/Lactonization
inhibitors.8 Because of their importance in both chemical and
pharmaceutical research, a number of syntheses of 2(5H)-
furanones have been reported9 and many of them rely upon
transition metal-catalyzed methodologies. Among them, ruthe-
nium-catalyzed carbonylative cyclization of allenols10 and enyne
methatesis11 resulted as valuable synthetic procedures. Cross-
coupling reaction such as Sonogashira,12 Stille,6,13 and Suzuki-
Miyaura14 reactions have been studied. Cyclization of allenic
acid derivatives and (Z)-enynols provides the title compounds
by means of the catalysis of Ag(I),15 Au (III),16 and Pd(II).17
Access to the 2(5H)-furanone skeleton can be accomplished
through palladium-mediated cyclization-carbonylation18 or
coupling-cyclization19 reactions of propargylic esters. Pal-
ladium-catalyzed reaction of unsaturated triflates and halides
with methyl-4-hydroxy-2-butenoate and its tetrahydropyranyl
derivative afforded 4-aryl- and 4-vinyl-2(5H)-furanones through
an in situ vinylic substitution/annulation sequence.20 As part of
an ongoing program, devoted to the use of transition metal
SCHEME 1
SCHEME 2
catalyzed reactions of alkynes bearing proximate suitable
functionalities to obtain cyclic derivatives,21 some of us have
been involved in the development of a regioselective synthesis
of 3-aryl- and 3-vinylfuran-2(5H)-ones 3 through sequential
palladium-catalyzed hydroarylation and hydrovinylation/lacton-
ization reactions of alkyl 4-hydoxy-2-alkynoates 1 with aryl/
vinyl halides/triflates.22 Subsequently, this methodology has been
extended by Oh and co-workers23 for the use of organoboronic
acids for palladium-catalyzed arylative lactonizations of 1.
Organoboron reagents offer significant advantages. They are
easily accessed by a variety of routes and the inorganic
byproducts of the reaction with boron derivatives are nontoxic
and can be removed by simple workup procedures. However,
the regioselectivity control of the reaction resulted in a dramatic
influence by the reaction conditions, features of the substrates
and the catalytic system. Moreover, conversely to the easy
accomplishment of the synthesis of 3-substituted-2(5H)-fura-
nones 3, the regioselective control required to generate 4-sub-
stituted-2(5H)-furanones 4 as an exclusive regioisomer through
the sequential palladium-catalyzed addition of organoboron
derivatives 2 to alkyl 4-hydroxy-2-alkynoates 1/lactonization
reactions has not been accomplished (Scheme 1).
Regioselective hydroarylation/hydrovinylation of â-(2-ami-
nophenyl)-R,â-ynones with arylboronic acids or potassium aryl
and vinyl trifluoroborates in the presence of Rh(acac)(C2H2)/
dppf as catalyst, followed by heterocyclization accomplished
the synthesis of functionalized 4-aryl and 4-vinylquinolines.24
Consequently, it was thought that Rh(I)-catalyzed addition of
organoboron derivatives 2 to alkyl 4-hydoxy-2-alkynoates 1
(Scheme 2) would allow the regioselective formation of
4-substituted-2(5H)-furanones 4.
(7) (a) Brimble, M. A.; Robinson, J. E.; Merten, J.; Beuzenberg, V.;
Dragunow, M.; Holland, P.; Mountfort, D. Synlett 2006, 1610-1613. (b)
Mahajan, V. A.; Borate, H. B.; Wakarkar, R. D. Tetrahedron 2006, 62,
1258-1272. (c) Stecko, S.; Pasniczek, K.; Jurczak, M.; Urbanczyk-
Lipkowska, Z.; Chmielewski, M. Tetrahedron: Asymmetry 2006, 17, 68-
78. (d) Roush, W. R.; Limberakis, C.; Kunz, R. K.; Barda, D. A. Org. Lett.
2002, 4, 1543- 1546. (e) Concello´n, J. M.; Riego, F.; Bernard, P. L. Org.
Lett. 2002, 4, 1303-130. (f) Makabe, H.; Hattori, Y.; Tanaka, A.; Oritani,
T. Org. Lett. 2002, 4, 1083-1085. (g) Renard, M.; Ghosez, L. A.
Tetrahedron 2001, 57, 2597-2608.
(8) Chio, Y.; Choo, H.; Chong, Y.; Lee, S.; Olgen, S.; Schinazi, R. F.;
Chu, C. K. Org. Lett. 2002, 4, 305-307.
(9) (a) Maulide, N.; Marko´, I. E. Org. Lett. 2006, 8, 3705-3707. (b)
Tejedor, D.; Santos-Expo´sito, A.; Garc´ıa-Tellado, F. Synlett 2006, 1607-
1610. (c) Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2003, 125, 1192-1194. (d) Holton, R. A.; Kim, H. B. Tetrahedron
Lett. 1986, 27, 2191-2194. (e) Guntrum, E.; Kuhn, W.; Spo¨nlein, W.; Ja¨ger,
V. Synthesis 1986, 921-925. (f) Rao, Y. S. Chem. ReV. 1976, 76, 625-
693.
(10) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Tkahashi, S.
Org. Lett. 2000, 2, 441-443.
(11) Hoye, T. R.; Donaldson, S. M.; Vos, T. J. Org. Lett. 1999, 1, 277-
279.
(12) (a) Boukouvalas, J.; Coˆte´, S.; Ndzi, B. Tetrahedron Lett. 2007, 48,
105-107. (b) Ma, S.; Shi, Z.; Yu, Z. Tetrahedron Lett. 1999, 40, 2393-
2396.
(13) Carter, N. B.; Mabon, R.; Walmsley, R.; Richecouer, A. M. E.;
Sweeney, J. B. Synlett 2006, 1747-1749.
(14) (a) Wu, J.; Zhang, L.; Gao, K. Eur. J. Org. Chem. 2006, 5260-
5263. (b) Wu, J.; Zhang, L.; Luo, Y. Tetrahedron Lett. 2006, 47, 6747-
6750. (c) Aquino, M.; Bruno, R.; Riccio, L.; Gomez-Paloma, L. Org. Lett.
2006, 8, 4831-4834. (d) Song, Y. S.; Lee, Y-J.; Kim, B. T.; Heo, J.-N.
Tetrahedron Lett. 2006, 47, 7427-7430. (e) El Murr, M. D.; Nowaczyk,
S.; Le Gall, T.; Mioskowski, C. Eur. J. Org. Chem. 2006, 1489-1498. (f)
Ahmed, Z.; Langer, P. Eur. J. Org. Chem. 2006, 1057-1060. (g) Mathews,
C. J.; Taylor, J.; Tyte, M. J.; Worthington, P.A. Synlett 2005, 538-540.
(h) Kalbalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2004, 45,
5139-5141. (i) Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org.
Chem. 2003, 68, 670-673. (j) Yao, M.-L.; Deng, M.-Z. J. Org. Chem.
2000, 65, 5034-5036.
(15) Marshall, J. A.; Wolf, M. A.; Wallace, E. M. J. Org. Chem. 1997,
62, 367-371.
(16) (a) Liu, Y.; Song, F.; Guo, G. J. Am. Chem. Soc. 2006, 128, 11332-
11333. (b) Kang, J.-E.; Lee, E.-S.; Park, S.-I.; Shin, S. Tetrahedron Lett.
2005, 46, 7431-7433.
(17) (a) Gu, Z.; Ma, S. Angew. Chem., Int. Ed. 2006, 45, 6002-6005.
(b) Ma, S. M. Pure Appl. Chem. 2006, 78, 197-208. (c) Ma, S. M.; Gu, Z.
H.; Deng, Y. Q. Chem. Commun. 2006, 94-96. (d) Ma, S.; Yu, Z. Chem.
Eur. J. 2004, 10, 2078-2087.
The Rh(I)-catalyzed reaction of alkyl 4-hydoxy-2-alkynoates
1 with organoboron derivatives 2 was then investigated. The
detailed report of the results obtained follows.
Results and Discussion
Since Miyaura et al.25 demonstrated in 1997 that arylboronic
acid may be add efficiently to Michael acceptors in the presence
(21) (a) Abbiati, G.; Arcadi, A.; Beccalli, E.; Bianchi, G.; Marinelli, F.;
Rossi, E. Tetrahedron 2006, 62, 3033-3039.
(22) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Pace, P. Eur.
J. Org. Chem. 1999, 3305-3313. (b) Arcadi, A.; Bernocchi, E.; Burini,
A.; Cacchi, S.; Marinelli, F.; Pietroni, B. Tetraherdon Lett. 1989, 30, 3465-
3468. (c) Arcadi, A.; Bernocchi, E.; Burini, A.; Cacchi, S.; Marinelli, F.;
Pietroni, B. Tetraherdon 1988, 44, 481-490.
(18) Kato, K.; Nouchi, H.; Ishikura, K.; Takaishi, S.; Motodate, S.;
Tanaka, H.; Okudaira, K.; Mochida, T.; Nishigaki, R.; Shigenobu, K.; Akita,
H. Tetrahedron 2006, 62, 2545-2554.
(19) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 1993, 65-
68.
(20) (a) Cacchi, S.; Ciattini, P. G.; Morera, E.; Pace, P. Synlett 1996,
545-546. (b) Ciattini, P. G.; Ortar, G. Synthesis 1986, 70-71. (d) Harnisch,
W.; Morera, E.; Ortar, G. J. Org. Chem. 1985, 50, 1990-1992.
(23) Oh, C. H.; Park, S. J.; Ryu, J. H.; Gupta, A. K. Tetraherdon Lett.
2004, 45, 7039-7042.
(24) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E.; Verdecchia, M.
Synlett 2006, 3218-3224.
(25) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16,
4229-4231.
J. Org. Chem, Vol. 72, No. 25, 2007 9511