Notes and references
1 (a) G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789–1791; (b) J. J. M. Halls, C. A. Walsh,
N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and
A. B. Holmes, Nature, 1995, 376, 498–500.
2 (a) W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv.
Funct. Mater., 2005, 15, 1617–1622; (b) G. Li, V. Shrotriya,
J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat.
Mater., 2005, 4, 864–868; (c) M. Reyes-Reyes, K. Kim and
D. L. Carroll, Appl. Phys. Lett., 2005, 87, 083506-1–083506-3;
(d) J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moes,
A. J. Heeger and G. C. Bazan, Nat. Mater., 2007, 6, 497–500.
3 H. Zollinger, Color Chemistry, Wiley-Vch., Weinheim, 3rd edn,
2003.
Fig. 4 Dependence of the open-circuit voltage VOC of the different
MC:PCBM solar cells (see Table 1) on the electronic properties of the
MC dyes: (left) dependence on HOMO energy determined from cyclic
voltammetry in solution (see Table 1); (right) dependence on CPD
determined from thin film by Kelvin probe. The dashed line shows the
linear fit of the data.
4 (a) M. Blanchard-Desce, C. R. Phys., 2002, 3, 439–448;
(b) F. Wurthner, R. Wortmann and K. Meerholz, ChemPhysChem,
¨
2002, 3, 17–31; (c) T. Verbiest, S. Houbrechts, M. Kauranen,
K. Clays and A. Persoons, J. Mater. Chem., 1997, 7, 2175–2189;
(d) S. R. Marder and J. W. Perry, Adv. Mater. (Weinheim, Ger.),
1993, 5, 804–815.
5 P. Gregory, High Technology Application of Organic Colorants,
Plenum, New York, 1991.
dyes in composite compared to those of isolated molecular
species, specifically to an increase of EHOMO
.
6 (a) R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt and L. Sun,
Chem. Mater., 2007, 19, 4007–4015; (b) D. P. Hagberg,
T. Edvinsson, T. Mariando, G. Boschloo, A. Hagfeldt and
L. Sun, Chem. Commun., 2006, 2245–2247; (c) T. Horiuchi,
H. Miura and S. Uchida, Chem. Commun., 2003, 3036–3037;
(d) S. Li, K. Jiang, K. Shao and L. Yang, Chem. Commun., 2006,
2792–2794; (e) S. Ito, S. M. Zakeeruddin, R. Humphry-Baker,
To determine this solid-state property experimentally, we
have measured the contact potential difference (CPD) between
thin films of the various MC dyes and a vibrating gold grid by
Kelvin probe. By plotting VOC as a function of CPD (Fig. 4,
right panel), we obtained a linear curve with a slope of near
unity, in agreement with theoretical expectations. Thus, the
difference between the HOMO energy determined for single
molecules in solution and the CPD determined for a solid film
containing aggregated dye molecules can be considered as a
qualitative measure for the dye–dye interactions in the solid
state. A more detailed investigation on this subject is currently
under way.
P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy,
´
M. Takata, H. Miura, S. Uchida and M. Gratzel, Adv. Mater.
¨
(Weinheim, Ger.), 2006, 18, 1202–1205; (f) K. Sayama, K. Hara,
N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara
and H. Arakawa, Chem. Commun., 2000, 1173–1174.
7 (a) F. Wurthner, C. Thalacker, R. Matschiner, K. Lukaszuk and
¨
R. Wortmann, Chem. Commun., 1998, 1739–1740; (b) S. Beckmann,
K.-H. Etzbach, P. Kramer, K. Lukaszuk, R. Matschiner,
¨
A. J. Schmidt, P. Schuhmacher, R. Sens, G. Seybold,
By considering the present two series of MC dyes, the
favourable trend can be recognised that an increase of the
acceptor strength shifts the absorption towards the NIR, and
concurrently VOC increases (Table 1). Thus, MC dyes absorb-
ing at rather long wavelengths can provide exceptionally large
VOC values because they exhibit a low HOMO energy. In
addition, the chemical stability of such MC dyes towards
oxidation is enhanced. For the dyes with the longest absorp-
tion wavelengths, JSC takes on the largest values which can be
attributed to the best overlap with the solar spectrum.
In conclusion, we have introduced traditional low-
molecular weight merocyanine colorants as p-type semi-
conducting components for solution-processible BHJ solar
cells with the fullerene-based acceptor PCBM. For several
merocyanine dyes, power conversion efficiencies in excess of
1% were achieved. The highest efficiency of 1.74% under
standard AM 1.5 conditions was obtained for the indoline-
based dye MD304. Our best solar cells show performances
similar to those of P3HT solar cells for films of similar
thickness. Because the absorption, redox, packing and film
forming properties of MC dyes can be easily tuned, we
anticipate significant advancement in the near future for this
new class of BHJ cells. The tunability of the optical and redox
properties of MC dyes will also be very beneficial for the
fabrication of tandem devices.
R. Wortmann and F. Wurthner, Adv. Mater. (Weinheim, Ger.),
¨
R. Wortmann, M. Redi-Abshiro, E. Mecher, F. Gallego-Gomez
and K. Meerholz, J. Am. Chem. Soc., 2001, 123, 2810–2824.
¨
1999, 11, 536–541; (c) F. Wurthner, S. Yao, J. Schilling,
8 Whilst our approach starts from classical colorants with outstanding
absorption but probably limited charge transport properties, previous
work on small molecule based BHJ cells by others has focused on
blends of PCBM and p-type organic semiconductors that exhibit
good charge carrier transport but less favourable absorption proper-
ties: (a) M. T. Lloyd, A. C. Mayer, S. Subramanian, D. A. Mourey,
D. J. Herman, A. V. Bapat, J. E. Anthony and G. G. Malliaras,
J. Am. Chem. Soc., 2007, 129, 9144–9149; (b) J. Roncali, P. Frere,
P. Blanchard, R. de Bettignies, M. Turbiez, S. Roquet, P. Leriche and
Y. Nicolas, Thin Solid Films, 2006, 511, 567–575; (c) X. Sun, Y. Zhou,
W. Wu, Y. Liu, W. Tian, G. Yu, W. Qiu, S. Chen and D. Zhu,
J. Phys. Chem. B, 2006, 110, 7702–7707; (d) S. Roquet, A. Cravino,
´
P. Leriche, O. Aleveque, P. Frere and J. Roncali, J. Am. Chem. Soc.,
2006, 128, 3459–3466; (e) L. Schmidt-Mende, A. Fechtenkotter,
¨
K. Mullen, E. Moons, R. H. Friend and J. D. MacKenzie, Science,
¨
2001, 293, 1119–1122; (f) L. Valentini, D. Bagnis, A. Marrocchi,
M. Seri, A. Taticchi and J. M. Kenny, Chem. Mater., 2008, 20, 32–34.
9 P. Schilinsky, C. Waldauf, J. Hauch and C. J. Brabec, J. Appl.
Phys., 2004, 95, 2816–2819.
10 A. J. Moule, J. B. Bonekamp and K. Meerholz, J. Appl. Phys.,
´
2006, 100, 094503-1–094503-7.
11 (a) M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk,
¨
C. Waldauf, A. J. Heeger and C. L. Brabec, Adv. Mater.
(Weinheim, Ger.), 2006, 18, 789–794; (b) V. D. Mihailetchi,
P. W. M. Blom, J. C. Hummelen and M. T. Rispens, J. Appl.
Phys., 2003, 94, 6849–6854.
12 For a similar analysis with a series of fullerene derivatives, see:
C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci,
T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen,
Adv. Funct. Mater., 2001, 11, 374–380.
13 F. Wurthner, S. Yao, T. Debaerdemaeker and R. Wortmann,
¨
J. Am. Chem. Soc., 2002, 124, 9431–9447.
We gratefully acknowledge financial support by DFG
(priority programme ‘‘Elementary Processes of Organic
Photovoltaics’’), Fonds der Chemischen Industrie, and
BASF SE.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 6489–6491 | 6491