A R T I C L E S
Guan et al.
Table 1. Optimization of Direct Oxidative Carbonylation of Arenesa
ladation process is often complicated by the reduction of Pd(II)
to Pd(0) under CO atmosphere.15-17 In the past decade, Rh18
and Ru19 complexes have emerged as very effective catalysts
in the activation and functionalization of C-H bonds. And
Rh-CO complexes are the most active species for carbonylation
reactions, such as Monsanto acetic acid process20 and hydro-
formylation of alkenes.21 In connection with Rh and Ru-
catalyzed reductive coupling of aryl C-H bonds with alkenes
or CO/alkenes,22 we envision that it may be possible to conduct
direct oxidative carbonylation using a simple Rh-CO catalyst
under CO atmosphere. Prior to our work, mild, highly efficient
and regioselective carbonylation through direct C-H bond
functionalization with CO and alcohol has not been realized.
In this article, we report an unprecedented protocol for regi-
entry
catalyst
oxidant
solvent
yield (%)b
1
2
3
4
5
6
7
8
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
[Rh(COD)Cl]2
Cu(OAc)2
BQ
CAN
toluene
toluene
toluene
toluene
toluene
toluene
1,4-dioxane
n-pentanol
DMF
48
ndc
32
K2S2O8
Oxone
Tempo
Oxone
Oxone
Oxone
Oxone
Oxone
Oxone
75
82
ndc
<5
<5
<5
15
9
(11) (a) Kawai, H.; Kobayashi, Y.; Qi, S.; Inoue, Y. Chem. Commun. 2008,
1464. (b) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q.
J. Am. Chem. Soc. 2006, 128, 78.
10
11
12
THF
toluene
toluene
d
Pd(OAc)2
<5
<5
d
Ru3(CO)12
(12) (a) Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129,
6066. (b) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005,
44, 2112.
a Reaction conditions: 1a (0.1 mmol), n-pentanol (5 equiv), oxidant
(13) (a) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007,
129, 9879. (b) Campeau, L. C.; Parisien, M.; Jean, A.; Fagnou, K.
J. Am. Chem. Soc. 2006, 128, 581. (c) Lafrance, M.; Rowley, C. N.;
Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754. (d)
Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. (e)
Ren, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3462. (f)
Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005,
127, 13154. (g) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed.
2005, 44, 4046.
(3 equiv), and catalyst (2 mol %) in solvent (2 mL) under CO (2 atm) at
110 °C for
performed with 5 mol % catalyst.
8
h. b Isolated yield. c Not detected. d Reaction was
oselective Rh-catalyzed oxidative carbonylation to form esters
using a directed C-H bond activation coupled with an
inexpensive and environmentally benign terminal oxidant.
(14) (a) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900.
(b) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (c) Hull, K. L.;
Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (d) Hull, K. L.;
Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047. (e)
Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 7134. (f) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S.
J. Am. Chem. Soc. 2005, 127, 7330.
Results and Discussion
Compounds containing heteroatoms are prevalent in nature.
The syntheses of these compounds have attracted much attention
in industrial and academic research due to desirable biological
and pharmaceutical properties. Our experiment was initially
conducted by treating 2-phenylpyridine 1a with n-pentanol (5
equiv), [Rh(COD)Cl]2 (2 mol %), Cu(OAc)2 (3 equiv) in toluene
under CO (2 atm) (Table 1, entry 1). We were pleased to find
that after 8 h at 110 °C, the reaction resulted in 48% yield of
the carbonylation product 2a. Further experiments showed that
Cu(OAc)2 is not a good oxidant for the C-H activation
carbonylation. We reasoned that the coordination of Cu(II) to
the pyridine moiety might prevent the carbonylation reaction,
which is in agreement with the results reported by Yu.16
Therefore, a variety of other oxidants were screened for better
efficiency in this transformation. To our delight, Oxone
(2KHSO5KHSO4K2SO4) was found to be a particularly effective
terminal oxidant in this Rh-catalyzed direct carbonylation
reaction. Inexpensive, safe, and environmentally benign Oxone
also makes this transformation more practical. After treatment
of 1a (0.1 mmol) with n-pentanol (5 equiv), Oxone (3 equiv),
and [Rh(COD)Cl]2 (2 mol %) in toluene at 110 °C under CO
(2 atm) for 8 h, 2a was obtained in 82% yield (Table 1, entry
5). Other oxidants such as BQ (benzoquinone), CAN (am-
monium cerium (IV) nitrate), K2S2O8, and TEMPO (2, 2, 6,
6-tetramethylpiperidine-N-oxyl radical) are less effective for this
Rh-catalyzed reaction (Table 1, entries 2-4, 6). We have also
tested a number of solvents; toluene was found to be most
effective (Table 1, entries 7-10). Low conversion was observed
when Pd(OAc)2 or Ru3(CO)12 was employed as the catalyst in
the oxidative carbonylation reaction (Table 1, entries 11-12).
Under the optimized conditions, for this direct carbonylation
process, we have explored the substrate scope (Table 2). This
new carbonylation procedure displayed good functional group
tolerance. Arenes with ester, trifluoromethyl, and ether groups
(15) (a) Dupont, J.; Consorti, C. S.; Spenser, J. Chem. ReV. 2005, 105,
2527. (b) Ryabov, A. D. Synthesis 1985, 233.
(16) Yu, W. Y.; Sit, W. N.; Lai, K. M.; Zhou, Z.; Chan, A. S. C. J. Am.
Chem. Soc. 2008, 130, 3304.
(17) Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416.
(18) (a) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G.
J. Am. Chem. Soc. 2006, 128, 2452, and references therein. (b) Lewis,
J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int.
Ed. 2006, 45, 1589. (c) Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.;
Fan, C.-A.; Zhao, Y.-M.; Xia, W.-J. J. Am. Chem. Soc. 2005, 127,
10836. (d) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229.
(e) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669. (f)
Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439.
¨
(19) (a) Ozdemir, I.; Demir, S.; C¸ etinkaya, B.; Gourlaouen, C.; Maseras,
F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156.
(b) Qi, S.; Sato, H.; Sugawara, S.; Inoue, Y. Org. Lett. 2008, 10, 1823.
(c) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.;
Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858. (d) Ackermann, L.;
Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. (e)
Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc.
2005, 127, 5936. (f) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai,
S. J. Am. Chem. Soc. 2003, 125, 1698. (g) Oi, S.; Ogino, Y.; Fukita,
S.; Inoue, Y. Org. Lett. 2002, 4, 1783. (h) Oi, S.; Fukita, S.; Hirata,
N.; Watanuki, N.; Miyano, S.; Inoue, Y. Org. Lett. 2001, 3, 2579.
(20) Roth, J. F.; Craddock, J. H.; Hershman, A.; Paulik, F. E. Chem. Tech.
1971, 1, 600.
(21) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry; University
Science Books: Mill Valley, CA, 1987.
(22) (a) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.;
Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858. (b) Ueno, S.;
Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2006,
128, 16516. (c) Martinez, R.; Chevalier, R.; Darses, S.; Genet, J. P.
Angew. Chem., Int. Ed. 2006, 45, 8232. (d) Asaumi, T.; Matsuo, T.;
Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004,
69, 4433, and references therein. (e) Lenges, C. P.; Brookhart, M.
J. Am. Chem. Soc. 1999, 121, 6616. (f) Chatani, N.; Fukuyama, T.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 1996, 118, 493. (g) Moore,
E. J.; Pretzer, W. R.; O’Connell, T. J.; Harris, J.; LaBounty, L.; Chou,
L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888.
9
730 J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009