R.-X. Li et al.
SHORT COMMUNICATION
J. F. Hartwig, Chem. Rev. 2010, 110, 890; d) T. C. Boorman, I.
Larrosa, Chem. Soc. Rev. 2011, 40, 1910.
[11] G. Satyanarayana, C. Maichle-Mössmer, M. E. Maier, Chem.
Commun. 2009, 1571.
[12] a) W. Wang, Q. Yang, R. Zhou, H.-Y. Fu, R.-X. Li, H. Chen,
X.-J. Li, J. Organomet. Chem. 2012, 697, 1; b) W. Wang, R.
Zhou, Z.-J. Jiang, K. Wang, H.-Y. Fu, X.-L. Zheng, H. Chen,
R.-X. Li, Adv. Synth. Catal. 2014, 356, 616.
[13] See the Supporting Information. CCDC-999259 (3aa) contains
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif. The dimeric 3aa (meso and d/l pair) may be
formed according to 1H NMR spectra and crystallographic
data.
[14] Olefin insertion was shown to be fast by running the reaction
under reductive MH conditions, with 100% conversion to com-
pound 2a. See ref.[2b] Further deuterated experiments to ex-
plain the source of the hydrogen of 2a are shown in the Sup-
porting Information.
[15] X-ray structures of 3bb and 3cc are shown in the Supporting
Information. CCDC-1013559 (3cc) and -1013560 (3bb) contain
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[16] CCDC-999260 (5) contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. A similar reaction was
reported by Lautens et al. just now; see: M. Sickert, H. Wein-
stabl, B. Peters, X. Hou, M. Lautens, Angew. Chem. Int. Ed.
2014, 53, 5147; Angew. Chem. 2014, 126, 5247. The process
provides a very efficient way to synthesize fused ring systems.
Further studies to extend the scope and clarify the mechanism
are currently underway.
[17] 2a (0.25 mmol), TBAB (1 equiv.), K3PO4 (2 equiv.), DMA
(1 mL), [Pd(COD)Cl2] (2 mol-%) at 120 °C for 24 h; 1b–d
(0.25 mmol), 2a (1 equiv.), TBAB (2 equiv.), K3PO4 (6 equiv.),
DMA (1.5 mL), [Pd(COD)Cl2] (4 mol-%) at 120 °C for 24 h.
[18] Palladium-catalyzed phenol-directed C–H activation: a) X.-S.
Wang, Y. Lu, H.-X. Dai, J.-Q. Yu, J. Am. Chem. Soc. 2010,
132, 12203; b) B. Xiao, T.-J. Gong, Z.-J. Liu, J.-H. Liu, D.-F.
Luo, J. Xu, L. Liu, J. Am. Chem. Soc. 2011, 133, 9250.
[19] Nickel-catalyzed direct arylation of C(sp3)–H bonds: a) Y. Aih-
ara, N. Chatani, J. Am. Chem. Soc. 2013, 135, 5308; b) Y. Aih-
ara, N. Chatani, J. Am. Chem. Soc. 2014, 136, 898.
Received: January 25, 2015
[3]
For selected examples of C(sp)–H functionalizations, see: a) L.
Zhao, C.-J. Li, Angew. Chem. Int. Ed. 2008, 47, 7075; Angew.
Chem. 2008, 120, 7183; b) C. A. Correia, C.-J. Li, Adv. Synth.
Catal. 2010, 352, 1446; c) M. O. Ratnikov, M. P. Doyle, J. Am.
Chem. Soc. 2013, 135, 1549; d) L. Ackermann, Acc. Chem. Res.
2014, 47, 281.
For recent reviews of C(sp2)–H functionalizations, see: a) D. A.
Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110,
624; b) L. Ackermann, Chem. Rev. 2011, 111, 1315; c) J. Yama-
guchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012,
51, 8960; Angew. Chem. 2012, 124, 9092; d) P. B. Arockiam, C.
Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879; e) B. Li,
P. H. Dixneuf, Chem. Soc. Rev. 2013, 42, 5744.
For selected reviews on C(sp3)–H functionalizations, see: a) O.
Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42,
1074; b) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110,
1147; c) O. Baudoin, Chem. Soc. Rev. 2011, 40, 4902; d) T. R.
Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 2011, 50, 3362;
Angew. Chem. 2011, 123, 3422; e) B.-J. Li, Z.-J. Shi, Chem. Soc.
Rev. 2012, 41, 5588; f) J. L. Roizen, M. E. Harvey, J. Du Bois,
Acc. Chem. Res. 2012, 45, 911; g) B. G. Hashiguchi, S. M. Bi-
schof, M. M. Konnick, R. A. Periana, Acc. Chem. Res. 2012,
45, 885; h) M. Corbet, F. D. Campo, Angew. Chem. Int. Ed.
2013, 52, 9896; Angew. Chem. 2013, 125, 10080; i) S. A. Girard,
T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53, 74; An-
gew. Chem. 2014, 126, 76.
For selected examples of C(sp3)–H alkylations, see: a) Z. Li,
C.-J. Li, J. Am. Chem. Soc. 2005, 127, 3672; b) L. Chen, C.-J.
Li, Adv. Synth. Catal. 2006, 348, 1459; c) J. Xie, H. Li, J. Zhou,
Y. Cheng, C. Zhu, Angew. Chem. Int. Ed. 2012, 51, 1252; An-
gew. Chem. 2012, 124, 1278; d) B. Zhang, Y.-X. Cui, N. Jiao,
Chem. Commun. 2012, 48, 4498; e) K. Alagiri, P. Devadig,
K. R. Prabhu, Chem. Eur. J. 2012, 18, 5160; f) S.-Y. Zhang, Q.
Li, G. He, W. A. Nack, G. Chen, J. Am. Chem. Soc. 2013, 135,
12135; g) T. Nobuta, N. Tada, T. Miura, A. Itoh, Org. Lett.
2013, 15, 574; h) G. Rouquet, N. Chatani, Angew. Chem. Int.
Ed. 2013, 52, 11726; Angew. Chem. 2013, 125, 11942.
[4]
[5]
[6]
[7] O. René, D. Lapointe, K. Fagnou, Org. Lett. 2009, 11, 4560.
[8] Y.-M. Hu, C.-L. Yu, D. Ren, Q. Hu, L.-D. Zhang, D. Cheng,
Angew. Chem. Int. Ed. 2009, 48, 5448; Angew. Chem. 2009, 121,
5556.
[9] a) see Ref. 2b; b) T. Piou, L. Neuville, J.-P. Zhu, Angew. Chem.
Int. Ed. 2012, 51, 11561; Angew. Chem. 2012, 124, 11729.
[10] T. Piou, L. Neuville, J.-P. Zhu, Org. Lett. 2012, 14, 3760.
Published Online: March 19, 2015
2584
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 2579–2584