C O M M U N I C A T I O N S
Scheme 1. Synthesis of Tb-1a
Figure 3. Selectivity of Tb-1 to various physiological cations. White bars
represent the time-delayed relative luminescence intensity after addition of
an excess of the appropriate cation (20 mM for NaOAc, LiOAc, Mg(OAc)2,
and Ca(NO3)2). Black bars represent the time-delayed relative luminescence
intensity after subsequent addition of 20 mM K+. Excitation at 332 nm,
emission at 545 nm, time delay 0.2 ms, [Tb-1] ) 50 µM, T ) 20 °C. Error
bars represent s.d., n ) 3.
with a 22 fold increase in luminescence intensity between 0 and
10 mM K+. Moreover, Tb-1 is highly selective for K+ over other
physiological cations, with a 93 fold selectivity over Na+.
Acknowledgment. This work was supported by the University
of Minnesota. We thank Hee-Yun Park for help with NMR
characterization.
Supporting Information Available: Detailed experimental proce-
dures and characterizations, excitation profile of Tb-1·K+ titration. This
References
(1) (a) Somjen, G. G.; Giacchino, J. L. J. Neurophysiol. 1985, 53, 1098–1108.
(b) Kager, H.; Wadman, W. J.; Somjen, G G. J. Neurophysiol. 2000, 84,
495–512. (c) Grimm, R. H., Jr.; Neaton, J. D.; Elmer, P. J.; Svendsen,
K. H.; Levin, J.; Segal, M.; Holland, L.; Witte, L. J.; Clearman, D. R.;
Kofron, P. New Engl. J. Med. 1990, 322, 569–574.
(2) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New
York, 2006; p 644.
a Reagents and conditions: (a) BOC2O, dioxane, 20 °C, 16 h; (b) 4-(2-
bromoethylphenol), Cs2CO3, MeCN, 65 °C, 18 h; (c) Cs2CO3, DMF, 20
°C, 1 h; (d) TFA, CH2Cl2, 20 °C, 1 h; (e) chloroacetyl chloride, NEt3,
CH2Cl2, 20 °C, 2.5 h; (f) cyclen, Cs2CO3, MeCN, 60 °C, 8 h; (g) tert-
butylbromoacetate, Cs2CO3, MeCN, 20 °C, 16 h; (h) TFA, CH2Cl2, 20 °C,
16 h; (i) TbCl3, NaOH, H2O, 80 °C, 16 h. All compounds are pure and
have correct analysis by MS and NMR.
(3) (a) Dietrich, B.; Lehn, J.-M.; Sauvage, J.-P.; Blanzat, J. Tetrahedron 1973,
29, 1629–1645. (b) de Silva, A. P.; Gunaratne, H. Q. N.; Sandanayake,
K. R. A. S. Tetrahedron Lett. 1990, 31, 5193–5196. (c) Crossley, R.;
Goolamali, Z.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 2 1994, 1615–
1623. (d) Crossley, R.; Goolamali, Z.; Gosper, J. J.; Sammes, P. G. J. Chem.
Soc., Perkin Trans. 2 1994, 513–520. (e) Xia, W. S.; Schmehl, R. H.; Li,
C. J. J. Am. Chem. Soc. 1999, 121, 5599–5600. (f) Xia, W. S.; Schmehl,
R. H.; Li, C. J. Eur. J. Org. Chem. 2000, 387–389. (g) Helgeson, R. C.;
Czech, B. P.; Chapoteau, E.; Gebauer, C. R.; Kumar, A.; Cram, D. J. J. Am.
Chem. Soc. 1989, 111, 6339–6350. (h) Kim, J.; McQuade, D. T.; McHugh,
S. K.; Swager, T. M. Angew. Chem., Int. Ed. 2000, 39, 3868–3872.
(4) (a) He, H. R.; Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K.
J. Am. Chem. Soc. 2003, 125, 1468–1469. (b) Padmawar, P.; Yao, X. M.;
Bloch, O.; Manley, G. T.; Verkman, A. S. Nat. Methods 2005, 2, 825–
827. (c) Namkung, W.; Padmawar, P.; Mills, A. D.; Verkman, A. S. J. Am.
Chem. Soc. 2008, 130, 7794–7795.
(5) (a) Li, C.; Law, G. L.; Wong, W. T. Org. Lett. 2004, 6, 4841–4844. (b)
Gunnlaugsson, T.; Leonard, J. P. Chem. Commun. 2003, 2424–2425. (c)
Gunnlaugsson, T.; Leonard, J. P. J. Chem. Soc., Dalton Trans. 2005, 3204–
3212.
(6) (a) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard,
J. A. K. Chem. ReV. 2002, 102, 1977–2010. (b) Cable, M. L.; Kirby, J. P.;
Sorasaenee, K.; Gray, H. B.; Ponce, A. J. Am. Chem. Soc. 2007, 129, 1474–
1475. (c) Hemmila, I.; Laitala, V. J. Fluoresc. 2005, 15, 529–542.
(7) (a) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Chem. ReV.
1991, 91, 1721–2085. (b) Gatto, V. J.; Arnold, K. A.; Viscariello, A. M.;
Miller, S. R.; Gokel, G. W. Tetrahedron Lett. 1986, 27, 327–330. (c) Gatto,
V. J.; Arnold, K. A.; Viscariello, A. M.; Miller, S. R.; Morgan, C. R.;
Gokel, G. W. J. Org. Chem. 1986, 51, 5373–5384. (d) Gatto, V. J.; Gokel,
G. W. J. Am. Chem. Soc. 1984, 106, 8240–8244.
increases significantly with increasing potassium concentration.
Addition of 10 mM K+ results in a 22-fold increase in Tb
luminescence at 545 nm. Notably, the signal is stable over several
hours.
The selectivity of Tb-1 toward several physiological cations is
shown in Figure 3. Tb-1 detects K+ with high selectivity: a 93-,
260-, 105-, and 61-fold selectivity over Na+, Li+, Mg2+, and Ca2+
was observed, respectively. Importantly, the subsequent addition
of 20 mM KOAc restores the 26-fold increase in luminescence,
demonstrating that the presence of competing cations does not affect
the determination of K+ concentration.
Notably, the observed selectivity cannot result solely from
selective binding of K+ by the diaza-18-crown-6. The selectivities
of the lariat ether for K+ over Na+ and Ca2+ in anhydrous alcohol
are barely 5- to 10-fold.7 Tb derivatives of these ethers also
demonstrate poor selectivity (4-fold).5 The respective 93- and 61-
fold selectivities observed for Tb-1 for K+ over Na+ and Ca2+
therefore have to include another motif. Given the selectivity of
the cation-π interaction observed in the crystal structures of the
K+ and Na+-bound receptor,9 we postulate that the enhanced
selectivity observed is the result of this interaction.
(8) (a) Ma, J. C.; Dougherty, D. A. Chem. ReV. 1997, 97, 1303–1324. (b) Gokel,
G. W.; Barbour, L. J.; Ferdani, R.; Hu, J. X. Acc. Chem. Res. 2002, 35,
878–886.
(9) De Wall, S. L.; Barbour, L. J.; Gokel, G. W. J. Am. Chem. Soc. 1999, 121,
8405–8406.
(10) Lee, K.; Dzubeck, V.; Latshaw, L.; Schneider, J. P. J. Am. Chem. Soc.
2004, 126, 13616–13617.
(11) Atkinson, P.; Findlay, K. S.; Kielar, F.; Pal, R.; Parker, D.; Poole, R. A.;
Puschmann, H.; Richardson, S. L.; Stenson, P. A.; Thompson, A. L.; Yu,
J. H. Org. Biomol. Chem. 2006, 4, 1707–1722.
In conclusion, a terbium complex for the time-gated luminescence
detection of K+ is presented. Tb-1 demonstrates high sensitivity
JA8077889
9
J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009 435