2-Aminothiazole Analogues as PARP-1 Inhibitors
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 3 725
soluble compounds for the treatment of ischemic injuries. J. Med.
Chem. 2003, 46, 3138–3151.
(16) Ferraris, D.; Ficco, R. P.; Pahutski, T.; Lautar, S.; Huang, S.; Zhang,
J.; Kalish, V. Design and synthesis of poly(ADP-ribose) polymerase-1
(PARP-1) inhibitors. Part 3: In vitro evalution of 1,3,4,5-tetrahydro-
benzo[c][1,6]- and [c][1,7]-naphthyridin-6-ones. Bioorg. Med. Chem.
Lett. 2003, 13, 2513–2518.
(17) Kurogi, Y.; Guner, O. F. Pharmacophore modeling and three-
dimensional database searching for drug design using catalyst. Curr.
Med. Chem. 2001, 8, 1035–1055.
(18) Debnath, A. K. Pharmacophore mapping of a series of 2,4-diamino-
5-deazapteridine inhibitors of Mycobacterium aVium comples dihy-
drofolate reductase. J. Med. Chem. 2002, 45, 41–53.
(19) Kurogi, Y.; Miyata, K.; Okamura, T.; Hashimoto, K.; Tsusumi, K.;
Nasu, M.; Moriyasu, M. Discovery of novel mesangial cell prolifera-
tion inhibitors using a three-dimensional database searching method.
J. Med. Chem. 2001, 44, 2304–2307.
(20) Kaminski, J. J.; Rane, D. F.; Snow, M. E.; Weber, L.; Rothofsky,
M. L.; Anderson, S. D.; Lin, S. L. Identification of novel farnesyl
protein transferase inhibitors using three-dimensional database search-
ing methods. J. Med. Chem. 1997, 40, 4103–4112.
degree of purity for target compounds 4-10. This material is
References
(1) Nguewa, P. A.; Fuertes, M. A.; Valladares, B.; Alonso, C.; Perez,
J. M. Poly(ADP-ribose) polymerases: Homology, structural domains
and functions. Novel therapeutical applications. Prog. Biophys. Mol.
Biol. 2005, 88, 143–172.
(2) Ame, J. C.; Spenlehauer, C.; Murcia, G. The PARP superfamily.
Bioessays 2004, 26, 882–893.
(3) Tentori, L.; Portarena, I.; Graziani, G. Potential clinical applications
of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol. Res.
2002, 45, 73–85.
(4) Ha, H. C.; Snyder, S. H. Poly(ADP-ribose) polymerase is a mediator
of necrotic cell death by depletion. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 13978–13982.
(5) Oliver, F. J.; Murcia, C. N.; Nacci, C.; Decker, P.; Andriantsitohaina,
R.; Muller, S.; Rubia, G.; Stoclet, J. C.; Murcia, G. Resistance to
endotoxic shock as a consequence of defective NF-ΚB activation in
poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 1999, 18,
4446–4454.
(6) Mandir, A. S.; Poitras, M. F.; Berliner, A. R.; Herring, W. J.; Guastella,
D. B.; Feldman, A.; Poirier, G. G.; Wang, Z. Q.; Dawson, T. M.;
Dawson, V. L. NMDA but not non-NMDA excitotoxicity is mediated
by poly(ADP-ribose) polymerase. Neuroscience 2000, 20, 8005–8011.
(7) Pieper, A. A.; Wallws, T.; Wei, G.; Clements, E. E.; Verma, A.;
Snyder, S. H.; Zweier, J. L. Myocardial postischemic injury is reduced
by poly(ADP-ribose) polymerase-1 gene disruption. Mol. Med. 2000,
6, 271–282.
(8) Yu, S. W.; Wang, H.; Poitras, C. C.; Bowers, W. J.; Federoff, H. J.;
Poirier, G. G.; Dawson, T. M.; Dawson, V. L. Mediation of poly(ADP-
ribose) polymerase-1-dependent cell death by apoptosis-inducing
factor. Science 2002, 297, 259–263.
(9) Kauppinen, T. M.; Swanson, R. A. The role of poly(ADP-ribose)
polymerase-1 in CNS disease. Neuroscience. 2007, 145, 1267–1272.
(10) Ferraris, D.; Ficco, R. P.; Dain, D.; Ginski, M.; Lautar, S.; Wisdom,
K. L.; Liang, S.; Lin, Q.; Lu, M. X. C.; Morgan, L.; Thomas, B.;
Williams, L. R.; Zhang, J; Zhou, Y.; Kalish, V. J. Design and synthesis
of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Part 4:
Biological evaluation of imidazobenzodiazepines as potent PARP-1
inhibitors for treatment of ischemic injuries. Bioorg. Med. Chem. 2003,
11, 3695–3707.
(11) Iwashita, A.; Hattori, K.; Yamamoto, H.; Ishida, J.; Kido, Y.; Kamijo,
K.; Murano, k.; Miyake, H.; Kinoshita, T.; Warizaya, M.; Ohkubo,
M.; Matsuoka, N.; Mutoh, S. Discovery of quinazolinone and
quinoxaline derivatives as potent and selective poly(ADP-ribose)
polymerase-1/2 inhibitors. FEBS Lett. 2005, 579, 1389–1393.
(12) Steinhagen, H.; Gerisch, M.; Mittendorf, J.; Schlemmer, K. H.;
Albrecht, B. Subtituted uracil derivatives as potent inhibitors of
poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett.
2002, 12, 3187–3190.
(13) Jagtap, P. G.; Southan, G. J.; Baloglu, E.; Ram, S.; Mabley, J. G.;
Marton, A.; Salzman, A.; Szabo, C. The discovery and sythesis of
novel adenosine substituted 2, 3-dihydro-1H-isoindol-1-ones: Potent
inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med.
Chem. Lett. 2004, 14, 81–85.
(14) Loh, V. M.; Cockcroft, X. L.; Dillon, K. J.; Dixon, L.; Drzewiecki,
J.; Eversley, P. J.; Gomez, S.; Hoare, J.; Kerrigan, F.; Matthews,
L. T. W.; Menear, K. A.; martin, N. M. B.; Newton, R. F.; Paul, J.;
Smith, G. C. M.; Vile, J.; whittle, A. J. Phthalazinones. Part 1: The
design and synthesis of a novel series of potent inhibitors of poly(ADP-
ribose) polymerase. Bioorg. Med. Chem. Lett. 2005, 15, 2235–2238.
(15) Ferraris, D.; Ko, Y. S.; Phhuski, T.; Ficco, R. P.; Serdyuk, L.; Alemu,
C.; Bradford, C.; Chiou, T.; Hoover, R.; Huang, S.; Lautar, S.; Liang,
S.; lin, Q.; Lu, M. X. C.; Mooney, M.; Morgan, L.; Qian, Y.; Tran,
S.; Williams, L. R.; Wu, Y. Q.; Zhang, J.; Zou, Y.; Kalish, V. Design
and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biologi-
cal evaluation of aza-5[H]-phenanthridin-6-ones as potent, aqueous-
(21) Zhang, W. T.; Yan, H.; Jiang, F. C. Construction of pharmacophore
model of PARP-1 inhibitor. Yao Xue Xue Bao. 2007, 42, 279–285;
Chinese.
(22) Ruf, A.; Murcia, G.; Schulz, G. E. Inhibition and NAD+ binding to
poly(ADP-ribose) polymerase as derived from crystal structures and
homology modeling. Biochemistry 1998, 37, 3893–3900.
(23) Costantino, G.; Macchiarulo, A.; Camaioni, E.; Pellicciari, R. Modeling
of poly(ADP-ribose) polymerase (PARP) inhibitors. Docking of ligands
and quantitative structure-activity relationship analysis. J. Med. Chem.
2001, 44, 3786–3794.
(24) Geronikaki, A.; Dearden, J. C.; Filimonov, D.; Galaeva, I.; Garibova,
T. L.; Gloriozova, T.; Krajneva, V.; Lagunin, A.; Macaev, F. Z.;
Molodavkin, G.; Poroikov, V. V.; Pogrebnoi, S. I.; Shepeli, F.;
Voronina, T. A.; Tsitlakidou, M.; Vlad, L. Design of new congnition
enhancers: From computer prediction to synthesis and biological
evalution. J. Med. Chem. 2004, 47, 2870–2876.
(25) Schneider, C. S.; Mierau, J. Dopamine autoreceptor agonist: Resolution
and pharmacological activity of 2,6-diaminotetrahydrobenzothiazole
and an aminothiazole analog of apomorphine. J. Med. Chem. 1987,
30, 494–498.
(26) Kin, K. M.; Kim, K. H.; Kang, T. C.; Kim, W. Y.; Lee, M.; Jung,
H. J.; Hwang, I. K.; Ko, S. B.; Koh, J. Y.; Won, M. H.; Oh, E.; Shin,
I. Design and biological evaluation of novel antioxidants containing
N-t-butyl-N-hydroxylaminophenyl moieties. Bioorg. Med. Chem. Lett.
2003, 13, 2273–3375.
(27) Zhu, X.; Yu, Q. S.; Cutler, R. G.; Culmsee, C. W.; Holloway, H. W.;
Lahiri, D. K.; Mattson, M. P.; Greig, N. H. Novel p53 inactivators
with neuroprotective action: Syntheses and pharmacological evaluation
of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-
hexahydrobenzoxazole derivatives. J. Med. Chem. 2002, 45, 5090–
5097.
(28) King, L. C.; Miller, F. M. The reaction of diazoketones with thioamide
derivatives. J. Am. Chem. Soc. 1949, 71, 367–368.
(29) King, L. C.; Hlavacek, R. J. The reaction of ketones with iodine and
thiourea. J. Am. Chem. Soc. 1950, 72, 3722–3725.
(30) Lo, E. N.; Prince, B. H.; Wei, M.; Panahian, N. Inhibition of poly(ADP-
ribose) polymerase: Reduction of ischemic injury and attenuation of
N-methyl-D-aspartate-induced neurotransmitter dysregulation. Stroke.
1998, 29, 830–836.
(31) Lenart, B.; Kintner, D. B.; Shull, G. E.; Sun, D. Na-K-Cl cotransporter-
mediated intracellular Na+ accumulation affects Ca2+ signaling in
astrocytes in an in vitro ischemic model. Neurobiol. Dis. 2004, 24,
9585–9597.
(32) Vermes, I.; Haanen, C.; Nakken, H. S.; Reutelingsperger, C. A novel
assay for apoptosis flow cytometric detection of phosphatidylserine
expression on early apoptotic cells using fluorescein iabelled annexin
V. J. Immunol. Methods 1995, 184, 39–51.
JM800902T