Notes and references
1 (a) T. Saito, Y. Nishimoto, M. Yasuda and A. Baba, J. Org.
Chem., 2006, 71, 8516; (b) T. Saito, M. Yasuda and A. Baba,
Synlett, 2005, 1737; (c) M. Yasuda, T. Saito, M. Ueba and
A. Baba, Angew. Chem., Int. Ed., 2004, 43, 1414.
2 (a) G. W. Kabalka, M.-L. Yao and S. Borella, Org. Lett., 2006, 8,
879; (b) M. Georgy, V. Boucard and J.-M. Campagne, J. Am.
Chem. Soc., 2005, 127, 14180; (c) S. K. De and R. A. Gibbs,
Tetrahedron Lett., 2005, 46, 8345; (d) Y. Kayaki, T. Koda and
T. Ikariya, Eur. J. Org. Chem., 2004, 4989; (e) S. H. Kim, C. Shin,
A. N. Pae, H. Y. Koh, M. H. Chang, B. Y. Chung and Y. S. Cho,
Synthesis, 2004, 1581; (f) G. W. Kabalka, G. Dong and
B. Venkataiah, Org. Lett., 2003, 5, 893; (g) M. R. Luzung and
F. D. Toste, J. Am. Chem. Soc., 2003, 125, 15760; (h) M. Rubin
and V. Gevorgyan, Org. Lett., 2001, 3, 2705; (i) G. Kaur,
M. Kaushik and S. Trehan, Tetrahedron Lett., 1997, 38, 2521.
3 (a) Y. Kayaki, T. Koda and T. Ikariya, Eur. J. Org. Chem., 2004,
4989; (b) H. Tsukamoto, M. Sato and Y. Kondo, Chem.
Commun., 2004, 1200; (c) G. W. Kabalka, G. Dong and
B. Venkataiah, Org. Lett., 2003, 5, 893; (d) K. -G. Chung,
Y. Miyake and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 2000,
15; (e) B. M. Trost and M. D. Spagnol, J. Chem. Soc., Perkin
Trans. 1, 1995, 2083.
4 (a) There are some reports for the coupling of alkyl halides with
alkenyl nucleophiles: X. Dai, N. A. Strotman and G. C. Fu, J. Am.
Chem. Soc., 2008, 130, 3302; (b) D. A. Powell, T. Maki and G. C. Fu,
J. Am. Chem. Soc., 2005, 127, 510; (c) S. L. Wiskur, A. Korte and
G. C. Fu, J. Am. Chem. Soc., 2004, 126, 82; (d) J. Zhou and G. C. Fu,
J. Am. Chem. Soc., 2003, 125, 12527; (e) H. Tang, K. Menzel and
G. C. Fu, Angew. Chem., Int. Ed., 2003, 42, 5079.
Fig. 1 Stereoselectivity and stereospecificity.
5 G. W. Kabalka, M.-L. Yao, S. Borella and Z.-Z. Wu, Org. Lett.,
2005, 7, 2865.
6 M. Yasuda, T. Somyo and A. Baba, Angew. Chem., Int. Ed., 2006,
45, 793.
7 For the selected review, see: G.-L. Chua and T.-P. Loh, in Acid
Catalysis in Modern Organic Synthesis, eds. H. Yamamoto and
K Ishihara, Wiley-VCH, Weinheim, 2008, vol. 1, ch. 8,
pp. 377–468.
8 For selected reviews, see: (a) H. Gaspard-Ilangovan, in Acid
Catalysis in Modern Organic Synthesis, eds. H. Yamamoto and
K. Ishihara, Wiley-VCH, Weinheim, 2008, vol. 2, ch. 11,
pp. 551–588; (b) N. Komatsu, in Organobismuth Chemistry, eds.
H. Suzuki and Y. Matano, Elsevier, Amsterdam, 2001, ch. 5,
pp. 371–440; Recently C–C bond formation reaction using bismuth
catalyst as a Lewis acid: (c) S. Tanaka, N. Tagashira, K. Chiba,
M. Yasuda and A. Baba, Angew. Chem., Int. Ed., 2008, 47, 6620;
(d) S. K. De and R. A. Gibbs, Tetrahedron Lett., 2005, 46, 8345;
(e) S. Kobayashi, T. Ogino, H. Shimizu, S. Ishikawa, T. Hamada
and K. Manabe, Org. Lett., 2005, 7, 4729; (f) P. A. Evans, J. Cui,
S. J. Gharpure and R. J. Hinkle, J. Am. Chem. Soc., 2003, 125,
11456.
Scheme 2 Intramolecular cyclization reactions.
effective for the intramolecular coupling shown in Scheme 2.
Under dilution conditions, InCl3-catalyzed intramolecular
cyclization of alkenylsilanes 4 and 6 gave the five- and six-
membered ring compounds 5 and 7 in 38 and 85% yields,
respectively. Unfortunately, BiBr3 did not work under the
dilution conditions, and only a 43% yield of 7 was achieved.
These results indicate that InCl3 has catalytic activity that is
higher than that of BiBr3.
9 DFT analysis of Lewis acidity of BiX3: J. Sanderson and
C. A. Bayse, Tetrahedron, 2008, 64, 7685.
10 tert-Butyl alcohol gave no desired product.
In summary, we have accomplished stereospecific direct
coupling of alcohols with alkenylsilanes catalyzed by either
InCl3 or BiBr3. Various alcohols and alkenylsilanes including
aromatic- and alkyl-substituted ones were successfully em-
ployed in this reaction system, and its application to intra-
molecular coupling gave five- or six-membered ring compounds.
The details of the mechanism for this reaction are under further
investigation.
11 D. A. Evans and Y. Aye, J. Am. Chem. Soc., 2006, 128, 11034.
12 The coupling reaction of (R)-(+)-phenylethanol (R)-1b (Tokyo
Chemical Industry Co., Ltd.) with (E)-2-phenyl-1-trimethylsilyl-
ethylene 2a in the presence of either InCl3 or BiBr3 gave the racemic
product 3ba in o1% ee. See ESIw for experimental details.
13 The result of the reaction using 2e (Table 3, Entries 7 and 8) was
additionally explained that the intermediate cation was unstable
because the sp2 plane of the cation and the benzene ring are
noncoplanar and the cation dose not conjugate the phenyl group
due to the steric hindrance between the silyl and the phenyl group.
14 Hyperconjugation of the Si–C bond: T. G. Traylor, W. Hanstein,
H. J. Berwin, N. A. Clinton and R. S. Brown, J. Am. Chem. Soc.,
1971, 93, 5715.
15 Weber et al. illustrated the stereospecificity in the reaction of
deuterium chloride with (Z)- and (E)-2-phenyl-1-trimethylsilyl-
ethylene with this hyperconjugation: K. E. Koenig and
W. P. Weber, J. Am. Chem. Soc., 1973, 95, 3417.
16 (a) K. Miura and A. Hosomi, Synlett, 2003, 143; (b) E. Langkopf
and D. Schinzer, Chem. Rev., 1995, 95, 1375; (c) T. A. Blumenkopf
and L. E. Overman, Chem. Rev., 1986, 86, 857.
This work was supported by Grant-in-Aid for Scientific
Research on Priority Areas (No. 18065015, ‘‘Chemistry of
Concerto Catalysis’’ and No. 20036036, ‘‘Synergistic Effects
for Creation of Functional Molecules’’) and for Scientific
Research (No. 19550038) from Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan. Y. N. thanks
The Global COE Program ‘‘Global Education and Research
Center for Bio-Environment Chemistry’’ of Osaka University.
ꢀc
This journal is The Royal Society of Chemistry 2008
6398 | Chem. Commun., 2008, 6396–6398