Synthesis of Symmetrical Organic Carbonates via Significantly
Enhanced Alkylation of Metal Carbonates with Alkyl Halides/
Sulfonates in Ionic Liquid
Yogesh R. Jorapur and Dae Yoon Chi*
Department of Chemistry, Inha University, 253 Yonghyundong Namgu, Inchon 402-751, Korea
Received August 14, 2005
We report a new phosgene-free method for the synthesis of symmetrical organic carbonates via
alkylation of metal carbonate with various alkyl halides and sulfonates in 1-n-butyl-3-methyl-
imidazolium hexafluorophosphate, [bmim][PF6], as an ecofriendly reaction media. Alkylation of
metal carbonate in various ionic liquids with 1-bromo-3-phenylpropane (1a) as a model reactant
has thoroughly been investigated. Potassium and cesium carbonates appeared to be the most suitable
metal carbonate due to their high solubility in ionic liquids. Besides good to excellent yields, this
simple and convenient methodology is devoid of highly toxic and harmful chemicals such as phosgene
and carbon monoxide, which is an additional advantage.
Introduction
are synthesized by utilizing alkyl halides and alcohols
using the carbonate and bicarbonate salts of alkali metals
and silver.8 Organic carbonates have been synthesized
via oxycarbonylation of alcohols9 and also by carbon
dioxide insertion into epoxides followed by transesteri-
fication of cyclic carbonates with appropriate alcohols.10
The alternative approach is by the carbonate exchange
reaction.11 Recently, Rossi et al.12 reported synthesis of
Alkyl organic carbonates have played a very important
role in the area of synthetic organic chemistry and have
become excellent templates for the formation of carbon-
carbon and carbon-hetero bonds. They have been used
as novel protecting groups,1 as lubricants and hydraulic
fluid,2 as herbicides, acaricides, fungicides, and seed
disinfectants,3 as octane enhancers for gasoline,4 and in
cosmetics and pharmaceuticals.5 Carbonates have also
been used in industry as a solvent for the separation of
phenols and cyclohexanones.6 Common synthetic meth-
ods leading to the carbonate moiety include the use of
classical toxic and harmful chemicals such as phosgene,
pyridine, and carbon monoxide.7 Additionally, carbonates
(7) (a) Gen. Patent 109,933 (Chemische Fabrik von Heydon) 1900
Friedl, 1901, 5; Gen. Patent 116,386 (Chemische Fabrik von Heydon)
1900 Friedl, 1904, 6, 1160. (b) Schnell, H. Chemistry and Physics of
Polycarbonates; Interscience Publishers: New York, 1964; Vol. 9, p
91. (c) Senet, J.-P. C. R. Acad. Sci. Paris, Ser. IIc 2000, 3, 505-516.
(d) Kondo, K.; Sonoda, N.; Tsutsumi, S. Tetrahedron Lett. 1971, 12,
4885-4886. (e) Fenton, D. M.; Steinwand, P. J. J. Org. Chem. 1974,
39, 701-704.
(8) (a) Beilstein Handbuch der Organischen Chemie; Springer-
Verleg: Berlin, 1921; Vol. 3, pp 3 and 5. (b) Sakai, S.; Fujinami, T.;
Sato, S. Jpn. Patent 38,327, 1980; Chem. Abstr. 1980, 93, 149787a. (c)
Kenichi, F.; Shigeo, Y.; Hideo, T.; Hiseo, K. Kogyo Kagaku Zasshi 1960,
63, 2146-2148.
(9) Rivetti, F.; Romano, U.; Delledonne, D. In Green Chemistry:
Designing Chemistry for the Environment; Anastas, P., Williamson,
T., Eds.; ACS Symposium Series No. 626; American Chemical
Society: Washington, DC, 1996; Chapter 7, pp 70-80.
* To whom correspondence should be addressed. Tel: +82-32-860-
7686. Fax: +82-32-867-5604.
(1) (a) Hegarty, A. F. In Comprehensive Organic Chemistry; Suth-
erland, I. O., Ed.; Pergamon: London, 1979; Vol. 2, p 1067. (b) Shaikh,
A.-A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951-976.
(2) (a) Ishida, N.; Hasegawa, H.; Sasaki, U.; Ishikawa, T. U.S. Patent
5,391,311, 1995. (b) Ishida, N.; Sakamoto, T.; Hasegawa, H. U.S. Patent
5,370,809, 1994.
(3) (a) Gier, D. W. U.S. Patent 3,348,939, 1964; Chem. Abstr. 1964,
68, 77729f. (b) Pianka, M.; Sweet, P. J. J. Sci. Food Agric. 1968, 19,
667-681. (c) Pianka, M. J. Sci. Food Agric. 1966, 17, 47-56. (d) Becher,
M.; Sehring, R. DE-OS 20,54,255, 1970; Chem. Abstr. 1972, 76,
128635x. (e) Hardies, D. E.; Rinehart, J. K. U.S. Patent 4,022,609, 1970;
Chem. Abstr. 1970, 80, 36857a.
(10) (a) Kishimoto, Y.; Ogawa, I. Ind. Eng. Chem. Res. 2004, 43,
8155-8162. (b) Li, Y.; Zhao, X.-q.; Wang, Y.-j. Appl. Catal. A 2005,
279, 205-208. (c) Bhanage, B. M.; Fujita, S.-i.; He, Y.; Ikushima, Y.;
Shirai, M.; Torii, K.; Arai, M. Catal. Lett. 2002, 83, 137-141.
(11) (a) Buysch, H.-J. In Ullman’s Encyclopedia of Industrial
Chemistry, 5th ed.; Campbell, T., Pfefferkorn, R., Rounsaville, J. F.,
Eds.; VCH Publications: Weinhein, 1986; Vol. 5, p 197. (b) Hill, J. W.;
Carothers, W. H. J. Am. Chem. Soc. 1933, 55, 5031-5039. (c) Shaikh,
A.-A. G.; Sivaram, S. Ind. Eng. Chem. Res. 1992, 31, 1167-1170.
(12) Verdecchia, M.; Feroci, M.; Palombi, L.; Rossi, L. J. Org. Chem.
2002, 67, 8287-8289.
(4) Liotta, F. J., Jr. U.S. Patent 5,206,408, 1993; Chem. Abstr. 1993,
119, 116825c.
(5) Rolf, K.; Achim, A.; Holger, T.; Gabrille, S.; Alfred, W. Ger. Offen.
DE 4,119,890, 1991; Chem. Abstr. 1993, 118, 66614q.
(6) Murtha, T. P. U.S. Patent 4,115,206, 1978.
10.1021/jo051722h CCC: $30.25 © 2005 American Chemical Society
Published on Web 11/22/2005
10774
J. Org. Chem. 2005, 70, 10774-10777