84
J. S. Yadav et al. / Tetrahedron Letters 50 (2009) 81–84
..
O
+
O
AcO
AcO
O
AcO
FeCl3
−
AcO
AcO
CN-CH2Ts
AcO
CH2Cl2 , r.t.
+
O
OAc
O
Fe(III)
H2O
O
+
O
O
NCH2Ts
AcO
AcO
NHCH2Ts
AcO
AcO
Scheme 2. A plausible reaction mechanism.
12. For C-glycosides derived from di-O-acetyl-L-arabinal, the a-configuration
The scope and generality of this process are illustrated with re-
corresponds to a trans relationship between the substituents at C1 and C4
(Table 1).
spect to various glucal derivatives and isonitriles, and the results
are presented in Table 1.13 Mechanistically, the reaction proceeds
via an oxocarbenium ion intermediate by a Ferrier rearrangement.
Subsequent axial attack of the isonitrile on the oxocarbenium ion
would give a carbimminium intermediate which is probably
hydrolyzed to the product amide (Scheme 2).
In summary, we have described a novel method for the synthe-
sis of C-pseudoglycals from glycals and isonitriles using a catalytic
amount of FeCl3 under mild reaction conditions. This method
provides high yields of C-glycosyl amides in short reaction times
with high anomeric selectivity, which makes it a useful process
for carbon–carbon bond formation at the anomeric position of
sugars.
13. Experimental procedure: To a stirred solution of glucal triacetate (0.5 mmol) in
Dichloro methane (2 mL) were added Tosmic (0.6 mmol) and FeCl3 (10 mol %).
The resulting mixture was stirred at room temperature for 30 min. After
complete conversion as indicated by TLC, the reaction mixture was diluted
with water and extracted with Dichloro methane (3 ꢀ 10 mL), and the
combined organics were dried over anhydrous Na2SO4. Removal of the
solvent in vacuo, followed by purification on silica gel using hexane–ethyl
acetate (3:1), afforded the pure C-glycosyl amide. Spectral data for selected
products: Major isomer 3a: ½a D27
ꢁ
11.6 (c 2.5, chloroform); IR (KBr): mmax: 3393,
2924, 2853, 1740, 1694, 1597, 1513, 1453, 1372, 1322, 1232, 1143, 1084, 1045,
758 cmꢂ1 1H NMR (300 MHz, CDCl3): d 7.72 (m, 2H, Ar), 7.27 (t, J = 6.9 Hz, 1H,
.
NH), 7.31 (m, 2H, Ar), 5.98 (ddd, J = 10.5, 3.0, 1.7 Hz, 1H, H4), 5.86 (dt, J = 10.4,
ꢃ2.9 Hz, 1H, H5), 5.06 (ddt, J = 5.9, 1.7, ꢃ3.0 Hz, 1H, H3), 4.70 (dd, J = 13.9,
7.4 Hz, 1H, H7), 4.54 (q, J = ꢃ2.8 Hz, 1H, H6), 4.51 (dd, J = 13.9, 6.4 Hz, 1H, H70),
4.21 (dd, J = 11.9, 3.7 Hz, 1H, H1), 4.17 (dd, J = 11.9, 7.5 Hz, 1H, H10), 3.90 (ddd,
J = 7.5, 5.9, 3.7 Hz, 1H, H2), 2.46 (s, 3H, Me), 2.19 (s, 3H, OAc), 2.14 (s, 3H, OAc).
13C NMR (75 MHz, CDCl3): d 170.8, 170.1, 168.2, 145.5, 133.5, 129.9, 128.8,
127.6, 124.8, 72.8, 71.9, 64.0, 62.6, 59.6, 21.6, 20.8, 20.6. LC–MS: m/z: 448.0
(M+Na). HRMS calcd for C19H23NO8NaS: 448.1015; found: 448.1012.
Minor isomer 3a0: 1H NMR (500 MHz, CDCl3): d 7.72 (m, 2H, Ar), 7.31 (m, 2H,
Ar), 7.23 (t, J = 6.6 Hz, 1H, NH), 5.80 (dt, J = 10.5, ꢃ1.6 Hz, 1H, H4), 5.76 (dt,
J = 10.5, ꢃ1.6 Hz, 1H, H5), 5.28 (ddd, J = 9.2, 3.3, 1.6 Hz, 1H, H3), 4.73 (dd,
J = 13.9, 7.4 Hz, 1H, H7), 4.56 (dt, J = 3.3, ꢃ1.6 Hz, 1H, H6), 4.44 (dd, J = 13.9,
5.7 Hz, 1H, H70), 4.31 (dd, J = 12.4, 2.6 Hz, 1H, H1), 4.25 (dd, J = 12.4, 5.2 Hz, 1H,
H10), 3.76 (ddd, J = 9.2, 5.2, 2.5 Hz, 1H, H2), 2.46 (s, 3H, Me), 2.17 (s, 3H, OAc),
2.10 (s, 3H, OAc).
Acknowledgement
D.N.C. thanks UGC, New Delhi, for the award of fellowship.
References and notes
1. (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545; (b) Hanessian, S. C. Total
Synthesis of Natural Products: The Chiron Approach; Pergamon Press: Oxford,
1984.
2. (a) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976; (b)
Paterson, L.; Keown, L. E. Tetrahedron Lett. 1997, 38, 5727; (c) Horita, K.;
Sakurai, Y.; Nagasawa, M.; Hachiya, S.; Yonemistu, O. Synlett 1994, 43.
3. Suhadolnik, R. J. Nucleoside Antibiotics; Wiley-Interscience: New York, 1970.
4. Weatherman, R. V.; Mortell, K. H.; Chervenak, M.; Kiessling, L. L.; Toone, E. J.
Biochemistry 1996, 35, 3619.
5. Williams, N. R.; Wander, J. D. In The Carbohydrates. Chemistry and Biochemistry;
Academic Press: New York, 1980; pp 761–798.
6. (a) Ferrier, R. J. J. Chem. Soc. (C) 1964, 5443; (b) Ferrier, R. J.; Ciment, D. M. J.
Chem. Soc. (C) 1966, 441; (c) Ferrier, R. J.; Prasad, N. J. Chem. Soc. (C) 1969, 570.
For a recent review on the Ferrier rearrangement, see: (d) Ferrier, R. J. Top. Curr.
Chem. 2001, 215, 153.
7. (a) Danishefsky, S. J.; Denin, S.; Lartey, P. J. Am. Chem. Soc. 1987, 109, 2082; (b)
De Raadt, A.; Griegl, H.; Klempic, N.; Stutz, A. E. J. Org. Chem. 1993, 58, 3179; (c)
De-Las Heras, F. G.; Felix, A. S.; Ferdanzandez-Risa, P. Tetrahedron 1983, 39,
1617; (d) Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M. Chem. Lett. 1993,
2013; (e) Toshima, K.; Miyamito, N.; Matsuo, G.; Nakata, M.; Matsumura, S. J.
Chem. Soc., Chem. Commun. 1996, 1379.
8. (a) Dawe, R. D.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1981, 1180; (b)
Hayashi, M.; Kawabata, H.; Inoue, K. Carbohydr. Res. 2000, 325, 68; (c) Takhi, M.;
Adel, A.-H. A. R.; Schimdt, R. R. Tetrahedron Lett. 2001, 42, 4053; (d) Yadav, J. S.;
Reddy, B. V. S.; Chand, P. K. Tetrahedron Lett. 2001, 42, 4057; (e) Danishefsky, S.
J.; Keerwin, J. F. J. Org. Chem. 1982, 47, 3803.
Major isomer 3b: ½a D27
ꢁ
49.8 (c 1.0, chloroform); IR (KBr)
m
max: 3408, 2929, 1715,
.
1656, 1515, 1455, 1374, 1346, 1177, 1068, 986, 759 cmꢂ1
1H NMR (300 MHz,
CDCl3): d 6.55 (d, J = 8.2 Hz, 1H), 5.92–5.81 (m, 2H), 5.12–5.05 (m. 1H), 4.63–
4.59 (m, 1H), 4.22–4.10 (m, 2H), 3.95–3.85 (m, 1H), 2.16 (s, 3H), 2.10 (s, 3H),
1.98–1.10 (m, 11H). 13C NMR (75 MHz, CDCl3): d 170.8, 170.2, 169.9, 145.0,
133.1, 73.0, 71.6, 64.3, 62.2, 47.0, 32.9, 25.3, 24.6, 20.8, 20.6. LC–MS: m/z: 362.0
(M+Na). HRMS calcd for C17H25NO6 Na: 362.1579; found: 362.1591.
Major isomer 3d: ½a D20
ꢁ
ꢂ7.7 (c 1.13, chloroform); IR (KBr)
m
max: 3132, 2929,
2856, 2657, 1630, 1510, 1384, 1255, 1086, 835, 773, 699, 624 cmꢂ1
.
1H NMR
(300 MHz, CDCl3): d 7.79–7.67 (m, 3H), 7.38–7.18 (m, 12H), 5.98–5.84 (m, 2H),
4.62–4.39 (m, 7H), 3.80–3.63 (m, 3H), 3.49 (dd, J = 9.8, 7.5 Hz, 1H), 2.37 (s, 3H).
13C NMR (75 MHz, CDCl3): d 169.2, 144.9, 137.5, 133.6, 129.6, 128.6, 128.3,
128.2, 127.6, 127.5, 127.3, 125.9, 125.3, 74.5, 73.3, 72.7, 70.6, 69.2, 68.7, 59.6,
21.4. LC–MS: m/z: 544.2 (M+Na). HRMS calcd for C29H31NO6NaS: 544.1769;
found: 544.1761.
Major isomer 3i: ½a D20
ꢁ
ꢂ28.4 (c 1.15, chloroform) IR (KBr)
m
max: 3350, 2989,
2930, 2826, 1693, 1596, 1514, 1456, 1396, 1322, 1144, 1087, 753 cmꢂ1
.
1H
NMR (300 MHz, CDCl3): d 7.75–7.70 (m, 3H), 7.30 (d, J = 8.3 Hz, 2H), 5.87–6.60
(m, 2H), 4.54–4.67 (m, 2H), 4.40–4.44 (m, 1H), 3.52–3.71 (m, 2H), 3.46 (s, 3H),
3.38 (s, 3H), 2.44 (s, 3H). 13C NMR (75 MHz, CDCl3): d 169.4, 145.5, 133.4, 129.7,
128.7, 126.9, 125.4, 74.2, 72.6, 71.4, 71.2, 59.8, 59.2, 56.1, 21.5. LC–MS: m/z:
392.1 (M+Na). HRMS calcd for C17H23NO6NaS: 392.1143; found: 392.1154.
Compound 3n: ½a 2D0
ꢂ136.7 (c 0.6 in chloroform); IR (KBr) m(max): 3344, 2927,
ꢁ
2857, 1734, 1693, 1596, 1515, 1372, 1322, 1238, 1144, 1086, 954, 815,
752 cmꢂ1 1H NMR (500 MHz, CDCl3): d 7.75 (m, 2H, Ar), 7.33 (m, 2H, Ar), 7.31
.
9. (a) Tsukiyama, T.; Isobe, M. Tetrahedron Lett. 1992, 33, 7911; (b) Huang, G.;
Isobe, M. Tetrahedron 2001, 57, 10241; (c) Tsukiyama, T.; Peters, S. C.; Isobe, M.
Synlett 1993, 413; (d) Hosokawa, S.; Kirschbaum, B.; Isobe, M. Tetrahedron Lett.
1998, 39, 1917.
(t, J = 7.0 Hz, 1H, NH), 5.93 (dt, J = 10.5, ꢃ1.7 Hz, 1H, H3), 5.76 (dt, J = 10.5,
ꢃ2.3 Hz, 1H, H4), 5.27(m, 1H, H2), 4.71 (dd, J = 14.2, 7.3 Hz, 1H, H6), 4.60 (dd,
J = 14.2, 6.8 Hz, 1H, H70), 4.50 (q, J ꢃ 2.3 Hz, 1H, H6), 4.17 (dd, J = 11.2, 5.2 Hz,
1H, H1), 3.60 (dd, J = 11.2, 7.4 Hz, 1H, H10), 2.44 (s, 3H, Me), 2.09 (s, 3H, OAc).
13C NMR (75 MHz, CDCl3): d 170.3, 168.6, 145.4, 133.4, 129.9, 128.8, 128.1,
125.8, 73.7, 65.3, 63.6, 59.4, 21.6, 20.8. LC–MS: m/z: 376 (M+Na). HRMS calcd
for C16H19NO6NaS: 376.0830; found, 376.0828.
10. Nicotra, F. Top. Curr. Chem. 1997, 187, 55.
11. (a) McMillan, K. G.; Tackett, M. N.; Dawson, A.; Fordyce, E.; Paton, R. M.
Carbohydr. Res. 2006, 341, 41; (b) Smith, M. D.; Long, D. D.; Marquess, D. G.;
Claridge, T. D. W.; Fleet, G. W. J. Chem. Commun. 1998, 2039.