Asymmetric Synthesis of ꢀ-Hydroxy Nitriles and Carboxylic Acids
SCHEME 1. Whole-Cell Reduction of
3-Oxo-3-phenylpropanenitrile Concomitant with
r-Ethylation
The ethyl group is proposed to come from the ethanol produced
by the whole cell metabolism.28,29
Optically active ꢀ-hydroxy carboxylic acids are usually
obtained from their ester or amide derivatives via carefully
controlled hydrolysis. Optically active ꢀ-hydroxy carboxylic acid
esters or amides in turn are prepared by asymmetric acetate aldol
reactions,30-33 Reformatsky reactions,34-37 metal-catalyzed
hydrogenation/transfer hydrogenation,16,38-46 and enzymatic47-50
reductions of ꢀ-keto esters or enzymatic resolution of racemic
acylated ꢀ-hydroxy esters.51 Reduction of ꢀ-keto acids has been
achieved with (-)-diisopinocampheylborane affording enantio-
merically enriched ꢀ-hydroxy carboxylic acids.52,53 Optically
active ꢀ-hydroxy carboxylic acids have also been prepared by
the kinetic resolution of racemic ꢀ-hydroxy carboxylic acid
esters.54,55 Although these methods proved successful to some
extent, improvement in the methodology for the synthesis of
optically pure ꢀ-hydroxy carboxylic acids is still sought after.
development of efficient and environmentally benign method-
ologies for the synthesis of enantiomerically pure ꢀ-hydroxy
nitriles and ꢀ-hydroxy carboxylic acids is of practical importance.
For chiral ꢀ-hydroxy nitriles, asymmetric aldol-type reactions
with acetonitrile,9-13 ꢀ-boration of R,ꢀ-unsaturated nitriles
followed by the oxidation,14 borane reductions,15,16 and transfer
hydrogenation17-19 of ꢀ-ketonitriles and lipase- or nitrilase-
catalyzed resolution of racemic ꢀ-hydroxy nitriles have been
reported.20-23 Although these methods have been successful in
some cases, they suffer from some drawbacks such as require-
ment of low reaction temperature, hazardous reagents, unsat-
isfactory enantiomeric purity, or maximum yield of 50%. For
example, chemoenzymatic dynamic kinetic resolution of racemic
ꢀ-hydroxynitriles using Candida antarctica lipase B and
ruthenium catalyst resulted in acetylated ꢀ-hydroxy nitriles with
36-99% ee with concomitant formation of up to 26% of
ꢀ-ketonitriles, limiting its application.24 An alternative approach
to access of chiral ꢀ-hydroxy nitriles is the biocatalytic reduction
of ꢀ-ketonitriles. However, a competing R-ethylation reaction
(Scheme 1) has been often observed in the bioreduction of
aromatic ꢀ-ketonitriles by whole cell biocatalysts such as bakers’
yeast and fungus CurVularia lunata,25,26 resulting in low
chemical yields of the desired ꢀ-hydroxy nitriles. The ethylated
product has not been completely eliminated even in an E. coli
whole cell system overexpressing yeast carbonyl reductases.27
In the course of exploring the application of enzyme catalysts
in green chemical synthesis, we embraced an approach in which
both antipodes of chiral ꢀ-hydroxy nitriles and ꢀ-hydroxy
carboxylic acids could be obtained with excellent optical purity
and yield via enzymatic reduction or sequential reduction/
(27) Hammond, R. J.; Poston, B. W.; Ghiviriga, I.; Feske, B. D. Tetrahedron
Lett. 2007, 48, 1217–1219.
(28) Florey, P.; Smallridge, A. J.; Ten, A.; Trewhella, M. A. Org. Lett. 1999,
1, 1879–1880.
(29) Dehli, J. R.; Gotor, V. Tetrahedron: Asymmetry 2000, 11, 3693–3700.
(30) Rodriguez, M.; Vicario, J. L.; Badia, D.; Carrillo, L. Org. Biomol. Chem.
2005, 3, 2026–2030.
(31) Cipiciani, A.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Ruzziconi, R. J.
Org. Chem. 2002, 67, 2665–2670.
(32) Palomo, C.; Oiarbide, M.; Aizpurua, J. M.; Gonzalez, A.; Garcia, J. M.;
Landa, C.; Odriozola, I.; Linden, A. J. Org. Chem. 1999, 64, 8193–8200.
(33) Bond, S.; Perlmutter, P. J. Org. Chem. 1997, 62, 6397–6400.
(34) Cozzi, P. G.; Benfatti, F.; Capdevila, M. G.; Mignogna, A. Chem.
Commun. 2008, 3317–3318.
(6) Nicolaou, K. C.; Chakraborty, T. K.; Ogawa, Y.; Daines, R. A.; Simpkins,
N. S.; Furst, G. T. J. Am. Chem. Soc. 1988, 110, 4660–72.
(7) Schlessinger, R. H.; Poss, M. A.; Richardson, S. J. Am. Chem. Soc. 1986,
108, 3112–14.
(8) Palomo, C.; Oiarbide, M.; Garcia, J. M.; Gonzalez, A.; Pazos, R.;
Odriozola, J. M.; Banuelos, P.; Tello, M.; Linden, A. J. Org. Chem. 2004, 69,
4126–4134.
(9) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757–
3760.
(10) Suto, Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.; Shibasaki, M. Org.
Lett. 2003, 5, 3147–3150.
(11) Sott, R.; Granander, J.; Hilmersson, G. Chem.sEur. J. 2002, 8, 2081–
2087.
(12) Granander, J.; Eriksson, J.; Hilmersson, G. Tetrahedron: Asymmetry
2006, 17, 2021–2027.
(13) Soai, K.; Hirose, Y.; Sakata, S. Tetrahedron: Asymmetry 1992, 3, 677–
80.
(14) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett. 2006, 8, 4887–4889.
(15) Wang, G.-y.; Liu, X.-y.; Zhao, G. Synlett 2006, 1150–1154.
(16) Wang, C.-J.; Tao, H.; Zhang, X. Tetrahedron Lett. 2006, 47, 1901–
1903.
(35) Fernandez-Ibanez, M. A.; Macia, B.; Minnaard, A. J.; Feringa, B. L.
Angew. Chem., Int. Ed. 2008, 47, 1317–1319.
(36) Orsini, F.; Sello, G.; Manzo, A. M.; Lucci, E. M. Tetrahedron:
Asymmetry 2005, 16, 1913–1918.
(37) Fukuzawa, S.-i.; Matsuzawa, H.; Yoshimitsu, S.-i J. Org. Chem. 2000,
65, 1702–1706.
(38) Hagemann, B.; Junge, K.; Enthaler, S.; Michalik, M.; Riermeier, T.;
Monsees, A.; Beller, M. AdV. Synth. Catal. 2005, 347, 1978–1986.
(39) Kesanli, B.; Lin, W. Chem. Commun. (Cambridge) 2004, 2284–2285.
(40) Junge, K.; Hagemann, B.; Enthaler, S.; Oehme, G.; Michalik, M.;
Monsees, A.; Riermeier, T.; Dingerdissen, U.; Beller, M. Angew. Chem., Int.
Ed. 2004, 43, 5066–5069.
(41) Hu, A.; Ngo, H. L.; Lin, W. Angew. Chem., Int. Ed. 2004, 43, 2501–
2504.
(42) Hu, A.; Ngo, H. L.; Lin, W. Angew. Chem., Int. Ed. 2003, 42, 6000–
6003.
(43) Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am. Chem.
Soc. 2002, 124, 4952–4953.
(44) Huang, X.; Ying, J. Y. Chem. Commun. (Cambridge) 2007, 1825–1827.
(45) Everaere, K.; Carpentier, J.-F.; Mortreux, A.; Bulliard, M. Tetrahedron:
Asymmetry 1998, 9, 2971–2974.
(17) Li, Y.; Li, Z.; Li, F.; Wang, Q.; Tao, F. Org. Biomol. Chem. 2005, 3,
2513–2518.
(18) Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q. Org. Lett. 2004, 6, 169–
172.
(46) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65,
6223–6226.
(47) Kaluzna, I. A.; Feske, B. D.; Wittayanan, W.; Ghiviriga, I.; Stewart,
J. D. J. Org. Chem. 2005, 70, 342–345.
(19) Watanabe, M.; Murata, K.; Ikariya, T. J. Org. Chem. 2002, 67, 1712–
1715.
(20) Kamal, A.; Khanna, G. B. R.; Ramu, R. Tetrahedron: Asymmetry 2002,
13, 2039–2051.
(48) Kaluzna, I. A.; Matsuda, T.; Sewell, A. K.; Stewart, J. D. J. Am. Chem.
Soc. 2004, 126, 12827–12832.
(49) Athanasiou, N.; Smallridge, A. J.; Trewhella, M. A. J. Mol. Catal. B:
Enzym. 2001, 11, 893–896.
(21) Garcia-Urdiales, E.; Rebolledo, F.; Gotor, V. Tetrahedron: Asymmetry
2001, 12, 3047–3052.
(22) Itoh, T.; Mitsukura, K.; Kanphai, W.; Takagi, Y.; Kihara, H.; Tsukube,
H. J. Org. Chem. 1997, 62, 9165–9172.
(23) Kamila, S.; Zhu, D.; Biehl, E. R.; Hua, L. Org. Lett. 2006, 8, 4429–
4431.
(24) Pamies, O.; Backvall, J.-E. AdV. Synth. Catal. 2002, 344, 947–952.
(25) Smallridge, A. J.; Ten, A.; Trewhella, M. A. Tetrahedron Lett. 1998,
39, 5121–5124.
(50) Zhu, D.; Mukherjee, C.; Rozzell, J. D.; Kambourakis, S.; Hua, L.
Tetrahedron 2006, 62, 901–905.
(51) Xu, C.; Yuan, C. Tetrahedron 2005, 61, 2169–2186.
(52) Ramachandran, P. V.; Pitre, S.; Brown, H. C. J. Org. Chem. 2002, 67,
5315–5319.
(53) Wang, Z.; Zhao, C.; Pierce, M. E.; Fortunak, J. M. Tetrahedron:
Asymmetry 1999, 10, 225–228.
(54) Ribeiro, C. M. R.; Passaroto, E. N.; Brenelli, E. C. S. J. Braz. Chem.
Soc. 2001, 12, 742–746.
(55) Boaz, N. W. J. Org. Chem. 1992, 57, 4289–92.
(26) Gotor, V.; Dehli, J. R.; Rebolledo, F. Perkin 1 2000, 307–309.
J. Org. Chem. Vol. 74, No. 4, 2009 1659