Scheme 1
.
Pd-Catalyzed Indole, Quinolone, and Isoquinolone
Synthesis
Table 1. Reaction Evaluation for the Formation of Quinolone 6a
entry
base
ligand
yieldb (%)
1
2
3
4
5
6
7
8
9
10
11
12
13c
14e
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Na2CO3
K3PO4
7
8
9
48
62
61
53
77
22
74
47
66
<5
<5
0
10
11
12
13
14
15
13
13
13
13
13
carbonylation processes could be identified, then combination
of the same precursors with an N-nucleophile under an
atmosphere of carbon monoxide should allow access to the
corresponding quinolone or isoquinolone derivatives (1 f
3 or 4, Scheme 1).8 In this paper, we detail the realization
of this goal, with an efficient and selective synthesis of
2-quinolones from 2-(2-haloalkenyl)aryl halides. We also
show that using modified reaction conditions allows the same
substrates to deliver an isoquinolone.
Both quinolones and isoquinolones are important hetero-
cycles, featuring in a number of natural products and
designed medicinal agents, and also serve as useful precur-
sors to the corresponding quinoline and isoquinolines,
respectively.9 The ability to access both systems from a single
precursor was an attractive prospect. However, for synthetic
utility, it was important that reactions selective for the specific
isomers be achieved. Which isomer was obtained would be
dependent on the site of initial reactionsaryl halide versus
alkenyl halidesand on which of the two catalytic reactions
occurred firstsamination or carbonylation. Based on our own
earlier studies on indole synthesis using the same class of
substrates,7 and on related literature examples,10 we expected
the alkenyl halide to be the site of first reaction. Literature
precedent suggested that carbonylation should be the faster
of the two processes.6b,11 These two predictions would lead
to the formation of 2-quinolones from the 2-(2-haloalkeny-
NaOtBu
Cs2CO3
Cs2CO3
12d
14d
a Reaction conditions: dibromide (1.0 equiv), octylamine (2.0 equiv),
Pd2(dba)3 (3 mol %), ligand (6 mol %), base (3.0 equiv), CO (balloon
pressure), toluene, 100 °C, 16 h. Alkene used as a 12.1 mixture of Z/E
isomers. b Isolated yields. c Dioxane used as solvent. d Conversion, deter-
mined by 1H NMR spectroscopy. e Reaction performed at 80 °C.
l)aryl halide substrates. To test this hypothesis, we explored
the coupling of dibromo styrene 5 and octylamine under a
balloon pressure of carbon monoxide (Table 1). Guided by
recent aminocarbonylation examples, we evaluated a variety
of phosphines in combination with Pd2(dba)3 using Cs2CO3
as base.11
Pleasingly, a number of structurally varied ligands deliv-
ered reasonable yields of the expected quinolone product 6
(entries 1-9). For example, the iPr-phosphine derivative of
MOP (11), the simple diphosphine dppp (13), and the bulky
electron-rich monodentate phosphine PtBu3 (15) all delivered
>65% yields of N-octylquinolone. Formation of the corre-
sponding isoquinolone was not observed. Use of the alterna-
tive bases Na2CO3, K3PO4, or NaOtBu, in combination with
the ligand dppp (13), resulted in inefficient reactions (entries
10-12). Finally, exchanging the solvent to dioxane (from
toluene), or performing the reactions at 80 °C instead of
100 °C, also resulted in poor yields of product (entries 13
and 14).
(7) (a) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem., Int.
Ed. 2005, 44, 403. (b) Willis, M. C.; Brace, G. N.; Findlay, T. J. K.; Holmes,
I. P. AdV. Synth. Catal. 2006, 348, 851. (c) Fletcher, A. J.; Bax, M. N.;
Willis, M. C. Chem. Commun. 2007, 4764.
(8) For examples of carbonylation used in combination with alternative
palladium-catalyzed reactions, see: (a) Worlikar, S. A.; Larock, R. C. J.
Org. Chem. 2008, 73, 7175. (b) Chouhan, G.; Alper, H. Org. Lett. 2008,
10, 4987. (c) Zheng, H.; Alper, H. Org. Lett. 2008, 10, 4903. (d) Tang, S.;
Yu, Q.-F.; Peng, P.; Li, J.-H.; Zhong, P.; Tang, R.-Y. Org. Lett. 2007, 9,
3413. (e) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2004, 69, 6772.
(f) Kaliinin, V. N.; Shostakovsky, M. V.; Poonomaryov, A. B. Tetrahedron
Lett. 1992, 33, 373. (g) Mori, M.; Chiba, K.; Ohta, N.; Ban, Y. Heterocycles
1979, 13, 329.
(9) (a) Gonza´lez, M. C.; Zafia-Polo, M. C.; Bla´zquez, M. A.; Serrano,
A.; Cortes, D. J. Nat. Prod. 1997, 60, 108. (b) Chen, C.-Y.; Chang, F.-R.;
Pan, W.-B.; Wu, Y.-C. Phytochemistry 2001, 56, 753. (c) Ruchelman, A. L.;
Houghton, P. J.; Zhou, N.; Liu, A.; Liu, L. F.; LaVoie, E. J. J. Med. Chem.
2005, 48, 792. (d) Nagarajan, M.; Moreell, A.; Fort, B. C.; Rae Meckley,
M.; Anthony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. J. Med. Chem.
2004, 47, 5651. (e) Wang, S.-W.; Pan, S.-L.; Huang, Y.-C.; Guh, J.-H.;
Chiang, P.-C.; Hunag, D.-Y.; Kuo, S.-C.; Lee, K.-H.; Teng, C.-M. Mol.
Cancer Ther. 2008, 7, 350.
(11) Examples of palladium catalyzed aminocarbonylation: (a) Deagos-
tino, A.; Larini, P.; Occhiato, E. G.; Pizzuto, L.; Prandi, C.; Venturello, P.
J. Org. Chem. 2008, 73, 1941. (b) Doi, T.; Kamioka, S.; Shimazu, S.;
Takahashi, T. Org. Lett. 2008, 10, 817. (c) Martinelli, J. R.; Clark, T. P.;
Watson, D. A.; Munday, R. H.; Buchwald, S. L. Angew. Chem., Int. Ed.
2007, 46, 8460. (d) Martinelli, J. R.; Freckmann, D. M. M.; Buchwald,
S. L. Org. Lett. 2006, 8, 4843. (e) Trost, B. M.; Ameriks, M. A. Org. Lett.
2004, 6, 1745.
(10) Barluenga, J.; Ferna´ndez, M. A.; Aznar, F.; Valde´s, C. Chem.sEur.
J. 2004, 10, 494.
584
Org. Lett., Vol. 11, No. 3, 2009