ACS Medicinal Chemistry Letters
LETTER
course of the 4 h study were 8, 37, and 398 nM for the 0.1, 1, and
10 mg/kg doses, respectively. While the plasma free Cavg for the
two lower doses were below the rat DGAT-1 IC50 (64 nM), it is
likely that in the enterocytes, a key DGAT-1 expressing tissue,
concentrations of 3 were considerably higher. On the basis of this
excellent potency and efficacy in an acute setting, compound 3
was advanced to a chronic preclinical model of obesity and
diabetes, which will be reported separately.
In conclusion, PF-04620110 (3) is a potent and selective
inhibitor of DGAT-1. Results for this compound demonstrate
the low risk of potential adverse effects mediated via the acyl
glucuronide metabolite or via photochemical processes. This
compound has excellent pharmacokinetic properties that are
consistent with once daily oral administration.32 Compound 3
has been advanced to human clinical trials for the treatment of
type II diabetes.
(8) King, A. J.; Judd, A. S.; Souers, A. J. Inhibitors of diacylglycerol
acyltransferase: A review of 2008 patents. Expert Opin. Ther. Patents
2010, 20 (1), 19–29.
(9) Birch, A. M.; Buckett, L. K.; Turnbull, A. V. DGAT1 inhibitors as
anti-obesity and anti-diabetic agents. Curr. Opin. Drug Discovery Dev.
2010, 13 (4), 489–496.
(10) Zhao, G.; Souers, A. J.; Voorbach, M.; Falls, H. D.; Droz, B.;
Brodjian, S.; Lau, Y. Y.; Iyengar, R. R.; Gao, J.; Judd, A. S.; Wagaw, S. H.;
Raven, M. M.; Engstrom, K. M.; Lynch, J. K.; Mulhern, M. M.; Freeman,
J.; Dayton, B. D.; Wang, X.; Grihalde, N.; Fry, D.; Beno, D. W. A.; Marsh,
K. C.; Su, Z.; Diaz, G. J.; Collins, C. A.; Sham, H.; Reilly, R. M.; Brune,
M. E.; Kym, P. R. Validation of diacyl glycerolacyltransferase 1 as a novel
target for the treatment of obesity and dyslipidemia using a potent and
selective small molecule inhibitor. J. Med. Chem. 2008, 51, 380–383.
(11) Yamamoto, T.; Yamaguchi, H.; Miki, H.; Shimada, M.; Nakada,
Y.; Ogino, M.; Asano, K.; Aoki, K.; Tamura, N.; Masago, M.; Kato, K.
Coenzyme a:diacylglycerol acyltransferase 1 inhibitor ameliorates
obesity, liver steatosis, and lipid metabolism abnormality in KKAy mice
fed high-fat or high-carbohydrate diets. Eur. J. Pharmacol. 2010,
640, 243–249.
’ ASSOCIATED CONTENT
(12) See the Supporting Information for a property space analysis of
DGAT-1 patent literature for 2004À2006.
S
Supporting Information. Experimental details for the
b
(13) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 2001, 46, 3–26.
syntheses and pharmacological characterization of 3, 4, and 21.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(14) Fox, B. M.; Furukawa, N. H.; Hao, X.; Lio, K.; Inaba, T.;
Jackson, S. M.; Kayser, F.; Labelle, M.; Kexue, M.; Matsui, T.; McMinn,
D. L.; Ogawa, N.; Rubenstein, S. M.; Sagawa, S.; Sugimoto, K.; Suzuki,
M.; Tanaka, M.; Ye, G. Yoshida, A.; Zhang, J. A. Preparation of fused
bicyclic nitrogen-containing heterocycles, useful in the treatment or
prevention of metabolic and cell proliferative diseases. WO 2004/
047755A2, CAN 141:38623.
’ AUTHOR INFORMATION
Corresponding Author
*Tel: 860-441-4423. Fax: 860-441-0548. E-mail: robert.l.dow@
pfizer.com.
(15) LogD measurements were determined by shake flask method
partitioning between 1-octanol:0.1 aqueous sodium phosphate (pH 7.4)
for 24 h.
(16) Jacobs, A. C.; Brown, P. C.; Chen, C.; Ellis, A.; Farrelly, J.;
Osterberg, R. CDER photosafety guidance for industry. Toxicol. Pathol.
2004, 32 (Suppl. 2), 17–18.
’ ACKNOWLEDGMENT
We thank Chris Wood and Chris Foti for UVÀvis spectral/
photostability analyses and Kay Ahn for MGAT enzyme
inhibition data.
(17) Henry, B.; Foti, C.; Alsante, K. Can light absorption and
photostability data be used to assess the photosafety risks in patients
for a new drug molecule? J Photochem. Photobiol., B 2009, 96, 57–62.
(18) A solution of 1 in methanol showed a 46% reduction in UV area
(214 nM) after irradiation with near UV (intensity 38 Wh/m2) and
visible (intensity 28000 lx h) light for 24 h. In the solid state, 0.7%
degradation of 1 was observed at 18900 KJ/m2.
(19) Stackulski, A. V.; Harding, J. R.; Lindon, J. C.; Maggs, J. L.; Park,
B. K.; Wilson, I. D. Acyl glucuronides: Biological activity, chemical
reactivity, and chemical synthesis. J. Med. Chem. 2006, 49 (24),
6931–6945.
(20) Birch, A. M.; Birties, S.; Buckett, L. K.; Kemmitt, P. D.; Smith,
G. J.; Smith, T. J.; Turnbull, A. V.; Wang, S. J. Discovery of a potent,
selective, and orally efficacious pyrimidinooxazinyl bicyclooctaneacetic
acid diacylglycerol acyltransferase-1 inhibitor. J. Med. Chem. 2009, 52
(6), 1558–1568.
(21) Skonberg, C.; Olsen, J.; Madsen, K. G.; Hansen, S. H.; Grillo,
M. P. Metabolic activation of carboxylic acids. Expert Opin. Drug Metab.
Toxicol. 2008, 4 (4), 425–438.
(22) Palomo, C.; Aizpurua, J. M.; Balentova, E.; Jimenez, A.;
Oyarbide, J.; Fratila, R. M.; Miranda, J. I. Synthesis of β-lactam scaffolds
for ditopic peptidomimetics. Org. Lett. 2007, 9 (1), 101–104.
(23) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. Expanding Pd-catalyzed C-N bond forming processes:
The first amidation of aryl sulfonates, aqueous amination, and comple-
mentarity with Cu-catalyzed reactions. J. Am. Chem. Soc. 2003,
125, 6653–6655.
’ REFERENCES
(1) McGarry, J. D. Dysregulation of fatty acid metabolism in the
etiology of type 2 diabetes. Diabetes 2002, 51 (1), 7–18.
(2) Zammit, V. A.; Buckett, L. K.; Turnbull, A. V.; Wure, J.; Proven,
A. Diacylglycerol acyltransferases: Potential roles as pharmacological
targets. Pharmacol. Ther. 2008, 118, 295–302.
(3) Cases, S.; Smith, S. J.; Zheng, Y.-W.; Myers, H. M.; Lear, S. R.;
Sande, E.; Novak, S.; Collins, C.; Welch, C. B.; Lusis, A. J.; Erickson,
S. K.; Farese, R. V. Identification of a gene encoding an acyl CoA:
diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis.
Proc. Natl. Acad. Sci. 1998, 95 (22), 13018–13023.
(4) Cases, S.; Stone, S. J.; Zhou, P.; Yen, E.; Tow, B.; Lardizabal,
K. D.; Voelker, T.; Farese, R. V. Cloning of DGAT2, a second
mammalian diacylglycerol acyltransferase, and related family members.
J. Biol. Chem. 2001, 276 (42), 38870–38876.
(5) Smith, S. J.; Cases, S.; Jensen, D. R.; Chen, H. C.; Sande, E.; Tow,
B.; Sanan, D. A.; Raber, J.; Eckel, R. H.; Farese, R. V. Obesity resistance
and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.
Nat. Genet. 2000, 25, 87–90.
(6) Chen, H. C.; Smith, S. J.; Ladha, Z.; Jensen, D. R.; Ferreira, L. D.;
Pulawa, L. K.; McGuire, J. G.; Pitas, R. E.; Eckel, R. H.; Farese, R. V.
Increased insulin and leptin sensitivity in mice lacking acyl CoA:
diacylglycerol acyltransferase 1. J. Clin. Invest. 2002, 109 (8), 1049–1055.
(7) Chen, H. C.; Jensen, D. R.; Myers, H. M.; Eckel, R. H.; Farese,
R. V. Obesity resistance and enhanced glucose metabolism in mice
transplanted with white adipose tissue lacking acyl CoA:diacylglycerol
acyltransferase 1. J. Clin. Invest. 2003, 111 (11), 1715–1722.
(24) Tarasov, E. V.; Henckens, A.; Ceulemans, E.; Dehaen, W. A
short total synthesis of cerpegin by intramolecular hetero Diels-Alder
411
dx.doi.org/10.1021/ml200051p |ACS Med. Chem. Lett. 2011, 2, 407–412