Organic Letters
Letter
1993, 115, 7027. (c) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J.
Am. Chem. Soc. 2001, 123, 5374. (d) Kim, S.; Lim, C. J.; Song, C.;
Chung, W. J. J. Am. Chem. Soc. 2002, 124, 14306.
(8) During the course of our study, copper(I)-catalyzed silylative
radical cyclization was reported; see: Xue, W.; Qu, Z. W.; Grimme, S.;
Oestreich, M. J. Am. Chem. Soc. 2016, 138, 14222.
(9) (a) Fujioka, T.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Org.
Lett. 2002, 4, 2257. (b) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira,
E. M. Angew. Chem., Int. Ed. 2011, 50, 11125. (c) Bloome, K. S.;
McMahen, R. L.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 20146.
(10) Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine and Materials, 2nd revised ed.; Hall, D. G., Ed.; Wiley-VCH:
Weinheim, 2011.
borylation product 3 or 6, and copper(I) alkoxide A is
regenerated.8,19
In summary, we have developed a new method for the
copper(I)-catalyzed borylative radical cyclization of alkyl
halides bearing alkene moieties. The optimized copper(I)
catalytic system provided high chemoselectivity that enables the
borylative radical cyclization and facile access to borylated
products containing various functional groups with high
stereoselectivity. The further mechanistic studies suggested
the radical related reaction pathway. Further work toward the
development of this reaction, including expansion of its
substrate scope and application of the borylated products, as
well as a detailed investigation of the reaction mechanism
including the ligand effect for the chemoselectivity, are
currently underway.
(11) Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890.
(12) Borylative radical cyclization of 6-bromo-1-hexene was reported
as a mechanistic study: (a) Yang, C. T.; Zhang, Z. Q.; Tajuddin, H.;
Wu, C. C.; Liang, J.; Liu, J. H.; Fu, Y.; Czyzewska, M.; Steel, P. G.;
Marder, T. B.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 528.
(b) Iwamoto, H.; Kubota, K.; Yamamoto, E.; Ito, H. Chem. Commun.
2015, 51, 9655. (c) Fu and co-workers previously referred two
examples of borylative radical cyclization with nickel(II) catalysts, but
the details of these reactions such as yield and spectrum data were not
given; see: Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.
(13) (a) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Tetrahedron
2015, 71, 2183. (b) Kubota, K.; Iwamoto, H.; Ito, H. Org. Biomol.
Chem. 2017, 15, 285. Examples of borylation of conjugated ketones
and esters, see: (c) Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A.
Tetrahedron Lett. 2000, 41, 6821. (d) Takahashi, K.; Ishiyama, T.;
Miyaura, N. Chem. Lett. 2000, 29, 982. Examples of borylation of
allylic carbonates or ethers, see: (e) Ito, H.; Kawakami, C.; Sawamura,
M. J. Am. Chem. Soc. 2005, 127, 16034. (f) Ito, H.; Kunii, S.;
Sawamura, M. Nat. Chem. 2010, 2, 972.
(14) The detailed results of the optimization are shown in the
(15) 6f was obtained in 59% yield (dr = > 95:5), when 6.0 mmol of
(16) Luo, L.; Yamamoto, H. Org. Biomol. Chem. 2015, 13, 10466.
(17) (a) MacRae, W. D.; Towers, G. H. N. Phytochemistry 1984, 23,
1207. (b) Dar, A. A.; Arumugam, N. Bioorg. Chem. 2013, 50, 1.
(18) The investigation of the effect of base is shown in the
(19) The discussion of the possible reaction pathway through
borylcupration of alkene followed by intramolecular cyclization is
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and characterization data
X-ray data for compound (R,R)-9 (CIF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by JSPS KAKENHI (Grant
Nos. 15H03804 and 15K13633). H.I. thanks the JSPS for their
scholarship support (Grant No. 16J0141006).
REFERENCES
■
(1) Reviews of radical reactions: (a) Jasperse, C. P.; Curran, D. P.;
Fevig, T. L. Chem. Rev. 1991, 91, 1237. (b) Clark, A. J. Chem. Soc. Rev.
́ ̀
2002, 31, 1. (c) Salom-Roig, X. J.; Denes, F.; Renaud, P. Synthesis
2004, 12, 1903. (d) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed.
2016, 55, 58.
(2) (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(b) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 41, 3925.
(c) Villar, F.; Renaud, P. Tetrahedron Lett. 1998, 39, 8655.
(3) (a) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M.
J. Am. Chem. Soc. 1982, 104, 5564. (b) Stork, G.; Mook, R.; Biller, S.
A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741.
(4) (a) Rao, A. V.; Gurjar, M. K.; Bose, D. S.; Devi, R. R. J. Org.
Chem. 1991, 56, 1320. (b) Yadav, J. S.; Chetia, L. Org. Lett. 2007, 9,
4587. (c) Li, H.; Chen, Q.; Lu, Z.; Li, A. J. Am. Chem. Soc. 2016, 138,
15555.
(5) Nakamura, E.; Inubushi, T.; Aoki, S.; Machii, D. J. Am. Chem. Soc.
1991, 113, 8980.
(6) (a) Ollivier, C.; Renaud, P. J. Am. Chem. Soc. 2001, 123, 4717.
(b) Peacock, D. M.; Roos, C. B.; Hartwig, J. F. ACS Cent. Sci. 2016, 2,
647.
(7) (a) Ferrier, R. J.; Petersen, P. M.; Taylor, M. A. J. Chem. Soc.,
Chem. Commun. 1989, 1247. (b) Stadtmueller, H.; Lentz, R.; Tucker,
C. E.; Stuedemann, T.; Doerner, W.; Knochel, P. J. Am. Chem. Soc.
D
Org. Lett. XXXX, XXX, XXX−XXX