A. Alexakis et al.
ing 3% of 28b with 7% ee); 1H NMR (400 MHz, CDCl3): d=7.31–7.27
(m, 2H), 7.21–7.17 (m, 3H), 4.99 (d, J=1.3 Hz, 1H), 4.86 (s, 1H), 3.40
(d, J=6.6 Hz, 2H), 2.67–2.43 (m, 3H), 1.96–1.87 (m, 1H), 1.72 (m, 1H),
1.72 ppm (s, 3H); 13C NMR (100 MHz, CDCl3): d=144.3, 142.0, 128.5,
128.5, 126.0, 114.3, 48.9, 36.6, 33.5, 33.4, 18.9 ppm; MS (EI mode): m/z
(%): 210 (2), 174 (2), 117 (7), 105 (42), 104 (100), 92 (10), 91 (58), 77 (8),
69 (17), 67 (6), 65 (10); the enantiomeric excess was measured by chiral
GC with a Hydrodex B6-TBDM column, hydrogen flow (program: 100–
0–1–170); tR =46.89 (+), 47.4 (À) [for 28b: the enantiomeric excess was
measured by chiral GC with a Chirasil Dex CB, helium flow (program:
100–0–1–170); tR =51.98 (major), 52.3 (minor)].
meric excess was measured by chiral HPLC with an OD-H column (5 mL,
99.9:0.1 nHex/iPrOH, 0.5 mLminÀ1, 158C); tR =16.68 (+), 18.41 (À).
(+)-2-Phenethylbut-3-en-1-ol (36): Rf =0.36 (silica gel, pentane/Et2O
1
75:25); H NMR (400 MHz, CDCl3): d=7.30–7.26 (m, 2H), 7.20–7.17 (m,
3H), 5.65 (ddd, 1J=8.8 Hz, 2J=10.1 Hz, 3J=17.2 Hz, 1H), 5.24 (dd, 1J=
1.5 Hz, 2J=10.1 Hz, 1H), 5.19 (dd, 1J=1.0 Hz, 2J=17.2 Hz, 1H), 3.61–
3.43 (m, 2H), 2.74–2.53 (m, 2H), 2.32–2.23 (m, 1H), 1.80–1.54 (m, 2H),
1.50 ppm (brs, 1H); 13C NMR (100 MHz, CDCl3): d=142.3, 139.7, 128.5,
128.5, 125.9, 118.2, 65.7, 46.7, 33.4, 32.6 ppm; the enantiomeric excess was
measured by chiral GC with a Chirasil-Dex CB column, helium flow
(program: 80–0–1–170); tR =61.51, 62.42.
(À)-3-(Bromomethyl)-7-tert-butoxy-2-methylhept-1-ene (27c): Rf =0.46
(silica gel, pentane/Et2O 97.5:2.5); [a]2D2 =À8.0 (c=1.13 in CHCl3) for
87% ee (containing 2% of 28c with 37% ee); 1H NMR (400 MHz,
CDCl3): d=4.89 (s, 1H), 4.78 (s, 1H), 3.38 (d, J=1.3 Hz, 1H), 3.36 (d,
J=2.3 Hz, 1H), 3.32 (t, J=6.6 Hz, 2H), 2.45–2.38 (m, 1H), 1.66 (s, 3H),
1.58–1.22 (m, 6H), 1.17 ppm (s, 9H); 13C NMR (100 MHz, CDCl3): d=
144.8, 113.6, 72.6, 61.4, 49.4, 36.8, 31.6, 30.6, 27.7, 24.0, 18.9 ppm; MS (EI
mode): m/z (%): 263 (5), 261 (5), 141 (6), 123 (29), 96 (10), 81 (15), 69
(26), 67 (12), 59 (22), 57 (100), 55 (15); the enantiomeric excess was mea-
sured by chiral GC with a Hydrodex B6-TBDM column, hydrogen flow
(program: 100–0–1–170); tR =37.29 (+), 37.64 (À) [for 28c: the enantio-
meric excess was measured by chiral GC with a Hydrodex B3P, hydrogen
flow (program: 100–60–1–110–30–20–170); tR =90.00 (major), 90.86
(minor)].
Acknowledgements
The authors thank the Swiss National Research Foundation (grant no.
200020-113332) and COST action D40 (SER contract no. C07.0097) for
financial support, as well as BASF for the generous gift of chiral amines,
Solvias for the ferrocenyl ligands, Laetitia Palais for the SimplePhos li-
gands,[31] Stephane Rosset for analytical help, and Mariona Canto Valve-
rdu for experimental help.
(À)-[3-(Bromomethyl)-3,4-dimethylpent-4-enyl]benzene (30): [a]2D2 =À3.0
(c=1.03 in CHCl3) for 30% ee; 1H NMR (300 MHz, CDCl3): d=7.31–
7.26 (m, 2H), 7.21–7.16 (m, 3H), 5.04 (t, J=1.2 Hz, 1H), 4.86 (s, 1H),
3.49 (d, J=10.1 Hz, 1H), 3.41 (d, J=10.1 Hz, 1H), 2.56–2.38 (m, 2H),
1.80 (s, 3H), 1.81–1.63 (m, 2H), 1.26 ppm (s, 3H); 13C NMR (CDCl3,
75 MHz): d=146.8, 142.5, 128.6 (2ꢇ), 128.4 (2ꢇ), 126.0, 113.7, 43.8, 43.6,
31.2, 22.9, 19.5 ppm; MS (EI mode): m/z (%): 268 (1), 266 (1), 164 (39),
162 (40), 131 (13), 117 (11), 105 (79), 104 (97), 92 (22), 91 (88), 84 (17),
83 (100), 82 (13), 81 (21), 79 (14), 77 (13), 69 (14), 67 (15), 65 (12), 55
(23); the enantiomeric excess was measured by chiral GC with a Hydro-
dex B6-TBDM, hydrogen flow (program: 120–0–1–170); tR =33.98 (+),
34.32 (À).
(+)-1-[(2-Cyclohexylbut-3-enyloxy)methyl]benzene (32): Rf =0.79 (silica
gel, pentane); [a]2D8 =+5.9 (c=1.00 in CHCl3) for 36% ee; 1H NMR
(400 MHz, CDCl3): d=7.38–7.28 (m, 5H), 5.71 (ddd, J=9.1, 10.3,
17.0 Hz, 1H), 5.07 (d, J=10.3 Hz, 1H), 5.03 (d, J=17.7 Hz, 1H), 4.51 (s,
2H), 3.47 (m, 2H), 2.22–2.15 (m, 1H), 1.72–1.61 (m, 5H), 1.28–0.87 ppm
(m, 5H); 13C NMR (100 MHz, CDCl3): d=139.0, 128.4, 128.4, 127.7,
127.6, 127.6, 116.3, 73.1, 71.8, 50.0, 38.6, 31.3, 29.6, 26.8, 26.7 ppm; MS
(EI mode): m/z (%): 244 (4), 171 (1), 161 (2), 153 (5), 135 (11), 123 (7),
104 (9), 91 (100), 81 (44), 67 (18), 55 (15); the enantiomeric excess was
measured by chiral SFC with an OD-H column (program: 0–5–1–15;
200 bar, 2 mLminÀ1, 308C); tR =5.85 (À), 6.69 (+).
(À)-(R)-1-[(2-Ethylbut-3-enyloxy)methyl]benzene (33): Rf =0.5 (silica
gel, pentane/Et2O 98:2); (ref. [16a]) [a]2D8 =+19.0 (c=1.1 in CHCl3) for
94% ee on ent-33); 1H NMR (400 MHz, CDCl3): d=7.34–7.33 (m, 4H),
7.30–7.26 (m, 1H), 5.66 (ddd, 1J=8.3 Hz, 2J=9.8 Hz, 3J=17.9 Hz, 1H),
5.10–5.06 (m, 2H), 4.52 (s, 2H), 3.40 (d, J=6.3 Hz, 2H), 2.31–2.22 (m,
1H), 1.62–1.52 (m, 1H), 1.34–1.23 (m, 1H), 0.88 ppm (t, J=7.3 Hz, 3H);
13C NMR (100 MHz, CDCl3): d=140.2, 138.8, 128.5, 127.7, 127.6, 115.6,
73.7, 73.1, 45.9, 24.2, 11.6 ppm; MS (EI mode): m/z (%): 190 (5), 189 (4),
104 (6), 92 (11), 91 (100), 65 (13); the enantiomeric excess was measured
by chiral HPLC with an OD-H column (5 mL, 99.8:0.2 nHex/iPrOH,
1 mLminÀ1, 408C); tR =5.66 (À), 6.14 (+).
(+)-(R)-1-[(2-Methylbut-3-enyloxy)methyl]benzene (34): Rf =0.85 (silica
gel, pentane); (ref. [16a]: [a]2D8 =À6.0 (c=1.1 in CHCl3) for 92% ee on
ent-34); 1H NMR (400 MHz, CDCl3): d=7.35–7.27 (m, 5H), 5.81 (ddd,
1J=17.2 Hz, 2J=10.4 Hz, 3J=6.8 Hz, 1H), 5.08 (dt, 1J=17.4 Hz, 4J=
1.8 Hz, 1H), 5.02 (d, 2J=10.3 Hz, 1H), 4.53 (s, 2H), 3.35 (dd, J=6.6,
39.6 Hz, 1H), 3.35 (dd, J=6.6, 21.5 Hz, 1H), 2.51 (m, J=6.6 Hz, 1H),
1.04 ppm (d, J=6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3): d=141.5,
138.6, 128.5, 127.7, 127.6, 114.2, 75.2, 73.1, 38.0, 16.8 ppm; MS (EI mode):
m/z (%): 176 (5), 175 (5), 92 (12), 91 (100), 65 (15), 55 (9); the enantio-
[1] a) B. M. Trost, C. Lee, in Catalytic Asymmetric Synthesis, 2nd ed.
(Ed.: I. Ojima), Wiley, New York, 2000, p. 593; b) A. Pfaltz, M.
Lautens, in Comprehensive Asymmetric Catalysis I–III (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999, p. 833;
for reviews of asymmetric allylic alkylation with various metals, see:
[2] a) M. van Klaveren, E. S. M. Persson, A. del Villar, D. M. Grove, J.-
E. Bꢅckvall, G. van Koten, Tetrahedron Lett. 1995, 36, 3059–3062;
b) A. Alexakis, C. Malan, L. Lea, C. Benhaim, X. Fournioux, Synlett
2001, 927–930.
3, 1169–1171; c) C. A. Luchaco-Cullis, H. Mizutani, K. E. Murphy,
Woodward, J. Gimeno, S. Gladiali, D. Ramazzotti, Chem. Commun.
2000, 2433–2434.
[5] For recent reviews of Cu-catalyzed AAA reactions, see: a) C. A.
Alexakis, C. Malan, L. Lea, K. Tissot-Croset, D. Polet, C. Falciola,
Karlstrçm, J.-E. Bꢅckvall, in Modern Organocopper Chemistry (Ed.:
N. Krause), Wiley-VCH, Weinheim, 2002.
[7] a) J. J. Van Veldhuizen, J. E. Campbell, R. E. Giudici, A. H. Hovey-
da, J. Am. Chem. Soc. 2005, 127, 6877–6882; b) M. A. Kacprzynski,
[9] V. Calꢃ, A. Nacci, V. Fiandanese, Tetrahedron 1996, 52, 10799–
10810.
[10] a) S. Tominaga, Y. Oi, T. Kato, D. K. An, S. Okamoto, Tetrahedron
[11] a) U. Piarulli, P. Daubos, C. Claverie, M. Roux, C. Gennari, Angew.
10626
ꢂ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2008, 14, 10615 – 10627