270
W.-C. Hung et al. / Tetrahedron Letters 50 (2009) 267–270
8. (a) Cheng, P.-N.; Hung, W.-C.; Chiu, S.-H. Tetrahedron Lett. 2005, 46, 4239–4242;
Macrocycle 1 is a multiple-use macrocycle that recognizes
(b) Cheng, P.-N.; Huang, P.-Y.; Li, W.-S.; Ueng, S.-H.; Hung, W.-C.; Liu, Y.-H.; Lai,
C.-C.; Peng, S.-M.; Chao, I.; Chiu, S.-H. J. Org. Chem. 2006, 71, 2373–2383; (c)
Cheng, K.-W.; Lai, C.-C.; Chiang, P.-T.; Chiu, S.-H. Chem. Commun. 2006, 2854–
2856; (d) Chiu, C.-W.; Lai, C.-C.; Chiu, S.-H. J. Am. Chem. Soc. 2007, 129, 3500–
3501; (e) Hsueh, S.-Y.; Cheng, K.-W.; Lai, C.-C.; Chiu, S.-H. Angew. Chem., Int. Ed.
2008, 47, 4436–4439.
diphenylurea, DBA+, and 2,6-lutidine derivatives through interac-
tions with either its diethylene glycol or Pd2+-chelated 2,6-pyridine
diamide moieties. The solid state structure of [1ꢁDBA+] confirmed
that [N+C–Hꢀꢀꢀ
p] interactions play an important role in stabilizing
this complex. We aim to use multiple-guest-binding hosts such
as 1 as components of future molecular catalytic systems and
controllable molecular switches.
9. Bisson, A. P.; Lynch, V. M.; Monahan, M.-K. C.; Anslyn, E. V. Angew. Chem., Int.
Ed. 1997, 36, 2340–2342.
10. Connors, K. A. Binding Constants; Wiley: New York, 1987.
11. CCDC 703716 and 703717 contain the supplementary crystallographic data for
[1ꢁDBA][PF6] and 5, respectively. These data can be obtained free of charge
Acknowledgment
12. Crystal data for [1ꢁDBA][DBA][2PF6]: [C55H61N5O5][PF6]2; Mr = 1162.03;
We thank the National Science Council for financial support
(NSC 95-2113-M-002-016-MY3).
ꢀ
triclinic; space group P1; a = 11.1624(4); b = 13.2258(5); c = 19.4664(7) Å;
V = 2797.18(18) Å3;
q
calcd = 1.380 g cmꢂ3
;
l
(Mo
Ka
) = 0.169 mmꢂ1
;
T =
295(2) K; colorless needle; 10,657 independent measured reflections; F2
refinement; R1 = 0.0764; wR2 = 0.1775.
References and notes
13. For more details of this synthetic method, see: Hung, W.-C.; Liao, K.-S.;
Y.-H. Liu; Peng, S.-M.; Chiu, S.-H. Org. Lett. 2004, 6, 4183–4186.
1. (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.; Sampaio, J.;
Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172–1175; (b) Saha,
S.; Leung, K. C.-F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater. 2007,
17, 685–693; (c) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-
Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.;
Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414–417.
2. Molecular Catenanes Rotaxanes and Knots; Sauvage, J.-P., Dietrich-Buchecker, C.,
Eds.; VCH-Wiley: Weinheim, 1999.
3. (a) Molecular Switches; Feringa, B. L., Ed.; Wiley-VCH: Weinheim, 2001;
(b) Elizarov, A. M.; Chiu, S.-H.; Stoddart, J. F. J. Org. Chem. 2002, 67, 9175–
9181; (c) Huang, F.; Switek, K. A.; Gibson, H. W. Chem. Commun. 2005, 3655–
3657.
4. (a) Fyfe, M. C. T.; Stoddart, J. F. Adv. Supramol. Chem. 1999, 5, 1–53; (b) Cantrill,
S. J.; Pease, A. R.; Stoddart, J. F. J. Chem. Soc., Dalton Trans. 2000, 3715–3734; (c)
Clifford, T.; Abushamleh, A.; Busch, D. H. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
4830–4836; (d) Gibson, H. W.; Yamaguchi, N.; Jones, J. W. J. Am. Chem. Soc.
2003, 125, 3522–3533; (e) Arico, F.; Badjic, J. D.; Cantrill, S. J.; Flood, A. H.;
Leung, K. C.-F.; Liu, Y.; Stoddart, J. F. Top. Curr. Chem. 2005, 249, 203–259; (f)
Griffiths, K. E.; Stoddart, J. F. Pure Appl. Chem. 2008, 80, 485–506.
5. (a) Loeb, S. J.; Wisner, J. A. Chem. Commun. 1998, 2757–2758; (b) Hoffart, D. J.;
Loeb, S. J. Angew. Chem., Int. Ed. 2005, 44, 901–904; (c) Vella, S. J.; Tiburcio, J.;
Loeb, S. J. Chem. Commun. 2007, 4752–4754.
6. (a) Allwood, B. L.; Spencer, N.; Shahriari-Zavareh, H.; Stoddart, J. F.; Williams, D.
J. J. Chem. Soc., Chem. Commun. 1987, 1064–1066; (b) Asakawa, M.; Ashton, P.
R.; Ballardini, R.; Balzani, V.; Belohradsky, M.; Gandolfi, M. T.; Kocian, O.; Prodi,
L.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. J. Am. Chem. Soc. 1997, 119, 302–
310; (c) Miljanic, O. S.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
12966–12970; (d) Huang, F.; Jones, J. W.; Gibson, H. W. J. Org. Chem. 2007, 72,
6573–6576; (e) Wang, F.; Han, C.; He, C.; Zhou, Q.; Zhang, J.; Wang, C.; Li, N.;
Huang, F. J. Am. Chem. Soc. 2008, 130, 11254–11255.
14. Data for 3-HꢀPF6: Mp 91–93 °C; 1H NMR (400 MHz, CD3SOCD3): 0.88 (t, J = 7 Hz,
12H), 1.29–1.38 (m, 8H), 1.51–1.58 (m, 8H), 2.47 (br, 4H), 3.32 (br, 4H), 3.58
(br, 4H), 3.75–3.89 (m, 8H), 3.90–3.95 (m, 4H), 4.24 (s, 4H), 4.62 (d, J = 6 Hz,
4H), 5.41–5.47 (m, 2H), 6.76 (d, J = 8 Hz, 4H), 6.96 (d, J = 8 Hz, 4H), 6.99 (d,
J = 8 Hz, 4H), 7.12 (d, J = 8 Hz, 4H), 7.33 (br, 2H), 8.33 (t, J = 7 Hz, 1H), 8.40 (d,
J = 7 Hz, 2H), 9.82 (br, 2H); 13C NMR (100 MHz, CD3OD): 14.2, 20.1, 33.7
(JPC = 7 Hz), 43.3, 45.5, 52.1, 67.6 (JPC = 6 Hz), 70.8, 71.8, 75.3, 126.6, 128.4,
129.6, 129.9, 130.7, 130.9, 136.4, 141.0, 141.8, 143.0 (JPC = 5 Hz), 150.2, 165.3;
31P NMR (162 MHz, CD3OD): ꢂ138.5 (septet, J = 707 Hz, PF ꢂ), 15.1; HRMS
(ESI): m/z calcd for [3-H]+ (C59H85N6O11P2) 1115.5752; found61115.5811.
15. (a) Furusho, Y.; Matsuyama, T.; Takata, T.; Moriuchib, T.; Hirao, T. Tetrahedron
Lett. 2004, 45, 9593–9597; (b) Fuller, A.-M.; Leigh, D. A.; Lusby, P. J.; Oswald, I.
D. H.; Parsons, S.; Walker, D. B. Angew. Chem., Int. Ed. 2004, 43, 3914–3918.
16. Crystal data for 5: [C34H36N4O5PdꢀH2O][PF6]; Mr = 705.08; monoclinic; space
group P21/n; a = 12.4078(2); b = 9.3147(1); c = 28.1577(3) Å; V = 2194.10(7)
Å3;
q ; l(Mo Ka ; T = 295(2) K; colorless
calcd = 1.466 g cmꢂ3 ) = 0.632 mmꢂ1
needle; 7303 independent measured reflections; F2 refinement; R1 = 0.0378;
wR2 = 0.0841.
17. Data for 9: Mp 247–249 °C; 1H NMR (400 MHz, CDCl3): 3.50–3.52 (m, 4H),
3.60–3.63 (m, 4H), 4.28 (s, 4H), 4.34 (s, 4H), 4.86 (s, 4H), 6.61 (d, J = 8 Hz, 4H),
6.85 (d, J = 8 Hz, 4H), 7.13–7.18 (m, 12H), 7.19–7.22 (m, 24H), 7.30 (d, J = 8 Hz,
4H), 7.42 (t, J = 8 Hz, 1H), 7.48–7.51 (m, 3H), 7.81 (br, 2H); 13C NMR (100 MHz,
CDCl3): 29.8, 50.2, 52.9, 64.5, 68.3, 70.2, 73.5, 82.9, 92.2, 117.4, 124.2, 125.7,
127.3, 127.4, 128.9, 130.8, 131.5, 135.1, 135.6, 137.8, 140.1, 140.3, 141.7, 143.9,
146.7, 152.2, 152.8, 171.0; HRMS (FAB): m/z calcd for [9]+ (C90H74N6O9Pd)
1488.4552; found 1488.4597. For more details of this synthetic method, see
Ref. 15a.
18. We were unable to remove the Pd(II) ion from the [2]rotaxane 9 when using
catalytic hydrogenolysis (Pd/C), hydrolysis under acidic (HCl) and basic (Et3N)
conditions, or high-pressure carbon monoxide (50 atm), suggesting that
relatively tight binding occurs between the components and supporting the
integrity of the purposed rotaxane-like molecular structure.
7. Huang, Y.-L.; Hung, W.-C.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew.
Chem., Int. Ed. 2007, 46, 6629–6633.