Communication
ChemComm
5 X. Zhang, B. Tutkowski, A. Oliver, P. Helquist and O. Wiest,
ACS Catal., 2018, 8, 1740–1747.
6 M. Grigalunas, T. Ankner, P. O. Norrby, O. Wiest and P. Helquist,
J. Am. Chem. Soc., 2015, 137, 7019–7022.
7 C. Che, Z. Qian, M. Wu, Y. Zhao and G. Zhu, J. Org. Chem., 2018, 83,
5665–5673.
8 R. Guo and G.-Z. Zhang, J. Am. Chem. Soc., 2017, 139, 12891–12894.
9 M. Fabregas, A. Gomez-Palomino, M. Pellicena, D. F. Reina,
P. Romea, F. Urpi and M. Font-Bardia, Org. Lett., 2014, 16,
6220–6223.
10 Y. Onishi, Y. Yoneda, Y. Nishimoto, M. Yasuda and A. Baba,
Org. Lett., 2012, 14, 5788–5791.
11 M. Yasuda, K. Chiba, N. Ohigashi, Y. Katoh and A. Baba, J. Am.
Chem. Soc., 2003, 125, 7291–7300.
12 Z. P. Yin, T. Meyer and X.-F. Wu, Tetrahedron Lett., 2019, 60,
864–867.
13 China Pat., CN 112028762 A, 2020. We have independently initiated
the studies and for the detailed timeline, please see ESI.
14 J. D. Neuhaus, A. Bauer, A. Pinto and N. Maulide, Angew. Chem., Int.
Ed., 2018, 57, 16215–16218.
15 A. Bayer and J. Vaitla, Synthesis, 2018, 612–628.
16 K.-C. Yan, M.-Y. He, J.-L. Li, H. He, R.-Z. Lai, Y. Luo, L. Guo and
Y. Wu, Chem. Commun., 2020, 56, 14287–14290.
17 S. Zhu, K. Shi, H. Zhu, Z.-K. Jia, X.-F. Xia, D. Wang and L.-H. Zou,
Org. Lett., 2020, 22, 1504–1509.
18 T. R. McDonald, L. R. Mills, M. S. West and S. A. L. Rousseaux,
Chem. Rev., 2021, 121, 3–79.
Scheme 3 Proposed reaction mechanism.
19 H. Zhang, G. Wu, H. Yi, T. Sun, B. Wang, Y. Zhang, G. Dong and
J. Wang, Angew. Chem., Int. Ed., 2017, 56, 3945–3950.
20 B. Q. Cheng, S. X. Zhang, Y. Y. Cui, X. Q. Chu, W. Rao, H. Xu,
G. Z. Han and Z. L. Shen, Org. Lett., 2020, 22, 5456–5461.
21 J.-C. Li, Y. Zheng, M.-X. Huang and W.-F. Li, Org. Lett., 2020, 22,
5020–5024.
22 D. Rosa and A. Orellana, Chem. Commun., 2013, 49, 5420–5422.
23 X.-K. Zhou, S.-J. Yu, L.-H. Kong and X.-W. Li, ACS Catal., 2016, 6,
647–651.
coordination to ruthenium(II) with the simultaneous release of
proton, b-carbon elimination generating a b-keto alkyl-metal inter-
mediate, formation of a-keto carbenoid species, 1,1-migratory
insertion/C–C bond formation, and proto-demetalation release of
product and regeneration of ruthenium catalyst.
24 X.-L. Yu, K.-H. Chen, F. Yang, S.-K. Zha and J. Zhu, Org. Lett., 2016,
18, 5412–5415.
25 X.-L. Yu, K.-H. Chen, Q. Wang, W.-J. Zhang and J. Zhu, Org. Chem.
Front., 2018, 5, 994–997.
26 S.-G. Zhou, J.-H. Wang, L.-L. Wang, C. Song, K.-H. Chen and J. Zhu,
Angew. Chem., Int. Ed., 2016, 55, 9384–9388.
27 B.-Q. Liu, C. Song, C. Sun, S.-G. Zhou and J. Zhu, J. Am. Chem. Soc.,
2013, 135, 16625–16631.
28 X.-L. Yu, K.-H. Chen, Q. Wang, S. Guo, S.-K. Zha and J. Zhu,
Angew. Chem., Int. Ed., 2017, 56, 5222–5226.
29 P. Zhou, W.-T. Yang, A. U. Rahman, G.-G. Li and B. Jiang, J. Org.
Chem., 2020, 85, 360–366.
In summary, a ruthenium catalytic method has been developed
for the construction of d-diketones via the coupling of readily
available a-keto sulfoxonium ylides and cyclopropanols. The pro-
tocol features mild reaction conditions, a broad substrate scope,
and a high product yield. The ruthenium system reported herein
expands the repertoire of sulfoxonium ylide-derived carbenoid
chemistry and suggests the promising prospect of this under-
explored, low-cost metal as a major player in this synthetically
important field.
30 B. Shu, X.-T. Wang, Z.-X. Shen, T. Che, M. Zhong, J.-L. Song,
H.-J. Kang, H. Xie, L. Zhang and S.-S. Zhang, Org. Chem. Front.,
2020, 7, 1802–1808.
J. Z. gratefully acknowledges the support from the National
Natural Science Foundation of China (21774056, 52073141).
31 X.-F. Cui and G.-S. Huang, Org. Biomol. Chem., 2020, 18, 4014–4018.
32 G.-F. Zheng, M.-M. Tian, Y.-W. Xu, X.-H. Chen and X.-W. Li,
Org. Chem. Front., 2018, 5, 998–1002.
33 B. V. Pati, A. Ghosh and P. C. Ravikumar, Org. Lett., 2020, 22,
2854–2860.
Conflicts of interest
There are no conflicts to declare.
¨
34 I. A. Shuklov, N. V. Dubrovina and A. Borner, Synthesis, 2007,
2925–2943.
Notes and references
35 P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr and L. Ackermann,
Angew. Chem., Int. Ed., 2019, 58, 9820–9825.
36 Y.-H. Cheng, Y.-H. He, J. Zheng, H. Yang, J. Liu, G.-H. An and
G.-M. Li, Chin. Chem. Lett., 2021, 32, 1437–1441.
37 B. M. Trost, J. Xie and N. Maulide, J. Am. Chem. Soc., 2008, 130,
17258–17259.
1 N. L. Wendler, R. P. Graber, C. S. Snoddy, Jr. and F. W. Bollinger,
J. Am. Chem. Soc., 1957, 79, 4476–4487.
2 T. M. Penning, J. Pharm. Sci., 1985, 74, 651–654.
3 C. R. Rausch, E. J. Jabbour, H. M. Kantarjian and T. M. Kadia,
Cancer, 2020, 126, 1152–1160.
38 E. Gyanchander, S. Ydhyam, N. Tumma, K. Belmore and J. K. Cha,
Org. Lett., 2016, 18, 6098–6101.
4 G. You, Z.-X. Chang, J. Yan, C. Xia, F.-R. Li and H.-S. Li, Org. Chem.
Front., 2021, 8, 39–45.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 7386–7389 | 7389