C O M M U N I C A T I O N S
Table 2. Iodomesitylene-Catalyzed Oxidative Cleavage of Olefins
rapid disappearance of the olefin within 10 min, with the formation of
a large amount of decane-1,2-diol. The subsequent gradual decrease
of the diol was accompanied by the formation of nonanoic acid.
Interestingly, the organocatalyst was found to be rapidly oxidized to
the iodane 5 by m-CPBA. These results indicate that a slow step in
the catalytic cycle for the cleavage of 1-decene is probably an oxidative
scission of the 1,2-diol derived from the olefin. Furthermore, kinetic
measurements for the cleavage of trans-1,2-cyclohexanediol with the
hydroxyiodane 8 suggested a rapid pre-equilibrium formation of a
cyclic dialkoxy-λ3-iodane such as 7, followed by its rate-limiting
decomposition to dialdehyde (Figure S4).
Scheme 2
In summary, we have developed an efficient method for organo-
catalytic oxidative cleavage of carbon-carbon multiple bonds as an
environmentally friendly, safe alternative to ozonolysis.
Supporting Information Available: Experimental details, Schemes
S1 and S2, and Figures S1-S4. This material is available free of charge
References
(1) (a) Kuhn, F. E.; Fischer, R. W.; Herrmann, W. A.; Weskamp, T. In Transition
Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH:
Weinheim, Germany, 2004; Vol. 2, p 427. (b) Lee, D. G.; Chen, T. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 7, p 541.
(2) For recent examples, see: (a) Travis, B. R.; Narayan, R. S.; Borhan, B. J. Am.
Chem. Soc. 2002, 124, 3824. (b) Ho, C.-M.; Yu, W.-Y.; Che, C.-M. Angew.
Chem., Int. Ed. 2004, 43, 3303. (c) Sato, K.; Aoki, M.; Noyori, R. Science
1998, 281, 1646.
(3) For iodobenzene-catalyzed oxidations, see:(a) Ochiai, M.; Miyamoto, K. Eur.
J. Org. Chem. 2008, 4229. (b) Ochiai, M. Chem. Record 2007, 7, 12. (c)
Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402. (d)
Fuchigami, T.; Fujita, T. J. Org. Chem. 1994, 59, 7190. (e) Ochiai, M.;
Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc.
2005, 127, 12244. (f) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto,
K.; Tohma, H.; Kita, Y. Angew. Chem., Int. Ed. 2005, 44, 6193. (g)
Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933.
(h) Yamamoto, Y.; Togo, H. Synlett 2006, 798. (i) Braddock, D. C.; Cansell,
G.; Hermitage, S. A. Chem. Commun. 2006, 2483. (j) Dohi, T.; Maruyama,
A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224.
(k) Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French,
A. N.; Wirth, T. Synlett 2007, 538.
a Method A: iodomesitylene (1 mol %)/m-CPBA/48% aq HBF4 (2.2
equiv)/CH2Cl2-HFIP-H2O 9:3:1/room temperature/N2. Method B:
iodomesitylene (10 mol %)/m-CPBA/48% aq HBF4 (2.2 equiv)/
c
MeCN-H2O 9:1/50 °C/N2. b m-CPBA. 1H NMR yields. Parentheses are
isolated yields of diketones or methyl esters obtained after methylation
with TMSCHN2. For structures of products, see Scheme S2.
d Iodomesitylene (10 mol %). e E:Z ) 3:7. f GC yields. g E:Z ) 72:28.
h Methyl 11-hydroxyundecanoate was obtained.
compounds and R-hydroxy ketones (entries 24-30);8 thus, 1-decyne
afforded high yields of nonanoic acid and formic acid (entry 24 and
Figure S1).
Scheme 2 depicts a catalytic cycle for the olefin cleavage, which
involves in situ generation of tetracoordinated squareplanar hydroxy-
λ3-iodane 5 as a reactive species.4,9 The iodane 5 undergoes oxidative
cleavage of 1,2-diol 6 derived from an olefin, probably via the
intermediacy of cyclic dialkoxy-λ3-iodane 7.10 In fact, CSI-MS
spectrum of a mixture of hydroxy-λ3-iodane [PhI(OH)BF4 ·18-crown-
6] 8 and trans-1,2-cyclohexanediol in dichloromethane detected a peak
assignable to the corresponding cyclic dialkoxy-λ3-iodane ·18-crown-6
complex (Figure S2). Time course for the catalytic cleavage of
1-decene under the conditions of method B (Figure S3) revealed a
(4) Miyamoto, K.; Tada, N.; Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772.
(5) For serious accidents due to explosions in the ozonolysis of olefins, see: Koike,
K.; Inoue, G.; Fukuda, T. J. Chem. Eng. Jpn. 1999, 32, 295.
(6) (a) Zhdankin, V. V.; Stang, P. J. Chem. ReV. 2002, 102, 2523. (b) Wirth, T.,
Ed. HyperValent Iodine Chemistry; Topics in Current Chemistry, 224;
Springer: Berlin, 2003. (c) Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett
1990, 365. (d) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656. (e)
Zhdankin, V. V. Sci. Synth. 2007, 31a, Chapter 31.4.1, 161. (f) Tohma, H.;
Kita, Y. AdV. Synth. Catal. 2004, 346, 111. (g) Ochiai, M. In Chemistry of
HyperValent Compounds; Akiba, K.-y., Ed.; Wiley-VCH: New York,
1999, Chapter 12.
(7) Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc. 1995,
117, 3360.
(8) (a) Muller, P.; Godoy, J. HelV. Chim. Acta 1981, 64, 2531. (b) Moriarty,
R. M.; Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53,
6124. (c) Merkushev, E. B.; Karpitskaya, L. G.; Novosel’tseva, G. I. Dokl.
Akad. Nauk 1979, 245, 607.
(9) In
a separate experiment (PhI/m-CPBA (1 equiv)/HBF4 (1 equiv)/
D2O/room temperature/3 h), exclusive formation of 5 (R ) Ph) was observed.
(10) (a) Criegee, R.; Beuker, H. Justus Liebigs Ann. Chem. 1939, 541, 218. (b)
Angyal, S. J.; Young, R. J. J. Am. Chem. Soc. 1959, 81, 5467. (c) Pausacker,
K. H. J. Chem. Soc. 1953, 107. (d) Ignacio, J.; Lena, C.; Altinel, E.; Birlirakis,
N.; Arseniyadis, S. Tetrahedron Lett. 2002, 43, 1409.
JA808829T
9
J. AM. CHEM. SOC. VOL. 131, NO. 4, 2009 1383