6.64 (s, 4 H), 4.20 (s, 24 H), 4.00 (m, 8 H), 3.88 (m, 8 H), 1.98
(m, 8 H), 1.64 (m, 8 H), 1.37 (m, 8 H), 1.34 (m, 8 H), 1.10
(d, 24 H) and 1.08 (t, 24 H). 13C NMR (100 MHz, 90%
CDCl3–10% CD3OD): d 162.1, 161.5, 145.8, 136.7, 122.9,
120.7, 115.3, 99.1, 96.4, 74.8, 57.1, 35.1, 26.2, 16.7 and
11.3. MALDI-TOF MS (m/z) calc. for C104H136N8O24Na
(M + Na+) 1905.0; found 1905.8 (M + Na+). ESI-HRMS
(m/z) calc. for C104H137N8O24 (M + H+) 1882.9779; found
1882.9792 (M + H+).
Acknowledgements
The authors acknowledge the National Natural Science
Foundation of China (no. 20672078 to L. Y. and no.
20774059 to W. F.), the National Science Foundation of the
USA (CHE-0701540 to B. G. and X. C. Z.), the Nebraska
Research Initiative (to X. C. Z.) for their support of this
research, the Research Computing Facility at the University of
Nebraska-Lincoln and Holland Computing Center at the
University of Nebraska-Omaha. This work is also part of a
Project sponsored by SRF for ROCS, SEM. We also thank the
Analytical Center of Sichuan University for NMR analyses.
Nine-residue macrocycle 3d. Prepared according to the
general synthetic procedure for macrocycles. 11 (20.4 mg,
0.023 mmol) and oxalyl chloride (8.82 mg, 0.070 mmol) were
used to prepare 2d. Diamine salt 1 (30.0 mg, 0.023 mmol),
DIEA (15.0 mg, 0.12 mmol) and CH2Cl2 (45 mL) were used
References
1 (a) Macrocyclic Chemistry: Current Trends and Future Perspectives,
ed. K. Gloe, Springer, Dordrecht, 2005; (b) Macrocycle Synthesis:
A Practical Approach, ed. D. Parker, Oxford University Press,
New York, 1996; (c) B. Dietrich, P. Viout and J.-M. Lehn,
1
for the macrocyclization. Yield 10.0%. H NMR (400 MHz,
90% CDCl3–10% CD3OD): d 10.14–9.80 (m, 9 H), 9.25–8.92
(m, 9 H), 6.74–6.58 (m, 9 H), 4.23–4.10 (m, 30 H), 3.97–3.85
(m, 16 H), 1.97 (m, 8 H), 1.61 (m, 8 H), 1.37 (m, 8 H), 1.08
(m, 24 H) and 0.99 (m, 24 H). MALDI-TOF MS (m/z) calc.
for C113H145N9O27Na (M + Na+) 2084.0; found 2083.3
(M + Na+). ESI-HRMS (m/z) calc. for C113H146N9O27
(M + H+) 2062.0362; found 2062.0374 (M + H+). Anal.
calc. for C113H145N9O27: C, 65.84; H, 7.09; N, 6.12; found:
65.85; H, 7.12; N, 6.32%.
Macrocyclic Chemistry, VCH, Weinheim, 1993; (d) F. Vogtle,
¨
Cyclophane Chemistry: Synthesis, Structures and Reactions, Wiley,
Chichester, 1993; (e) D. Sanchez-Garcia and J. L. Sessler, Chem.
Soc. Rev., 2008, 37, 215.
2 Some recent examples of macrocycles and assemblies: (a) H. Jiang,
J. M. Leger, P. Guionneau and I. Huc, Org. Lett., 2004, 6, 2985;
(b) L. Y. Xing, U. Ziener, T. C. Sutherland and L. A. Cuccia,
Chem. Commun., 2005, 5751; (c) C. Rotger, M. N. Pina, M. Vega,
P. Ballester, P. M. Deya and A. Costa, Angew. Chem., Int. Ed.,
2006, 45, 6844; (d) F. Campbell, J. Plante, C. Carruthers,
M. J. Hardie, T. J. Prior and A. J. Wilson, Chem. Commun.,
2007, 2240; (e) S. B. Y. Shin, B. Yoo, L. J. Todaro and
K. Kirshenbaum, J. Am. Chem. Soc., 2007, 129, 3218;
(f) Y. Y. Zhu, C. Li, G. Y. Li, X. K. Jiang and Z. T. Li, J. Org.
Chem., 2008, 73, 1745.
Ten-residue macrocycle 3e. Prepared according to the
general synthetic procedure for macrocycles. 13 (27.5 mg,
0.023 mmol) and oxalyl chloride (8.82 mg, 0.070 mmol) were
used to prepare 2e. Diamine salt 1 (30.0 mg, 0.023 mmol),
DIEA (15.0 mg, 0.12 mmol) and CH2Cl2 (45 mL) were used
for the macrocyclization. Yield 6.2%. 1H NMR (400 MHz,
90% CDCl3–10% CD3OD): d 10.27–9.80 (m, 10 H), 8.95
(m, 10 H), 6.72–6.04 (m, 10 H), 4.17–4.05 (m, 30 H),
3.95–3.85 (m, 20 H), 1.97 (m, 10 H), 1.61 (m, 10 H), 1.37
(m, 10 H), 1.09 (m, 30 H) and 0.97 (m, 30 H). MALDI-TOF
MS (m/z) calc. for C130H170N10O30Na (M + Na+) 2375.2;
found 2374.4 (M + Na+). ESI-HRMS (m/z) calc. for
3 (a) C. Bazzicalupi, A. Bencini, A. Bianchi, A. Danesi, E. Faggi,
C. Giorgi, S. Santarelli and B. Valtancoli, Coord. Chem. Rev.,
2008, 252, 1052; (b) S. Hoger, Angew. Chem., Int. Ed., 2005, 44,
¨
3806; (c) W. Zhang and J. S. Moore, Angew. Chem., Int. Ed., 2006,
45, 4416; (d) M. J. MacLachlan, Pure Appl. Chem., 2006, 78, 873;
(e) C. Grave and A. D. Schluter, Eur. J. Org. Chem., 2002, 3075.
4 (a) S. S. Tandon, S. D. Bunge and L. K. Thompson, Chem.
Commun., 2007, 798; (b) D. Pasini and M. Ricci, Curr. Org. Synth.,
2007, 4, 59; (c) S. H. Seo, T. V. Jones, H. Seyler, J. O. Peters,
T. H. Kim, J. Y. Chang and G. N. Tew, J. Am. Chem. Soc., 2006,
128, 9264; (d) S. Lahiri, J. L. Thompson and J. S. Moore, J. Am.
Chem. Soc., 2000, 122, 11315; (e) A. S. Shetty, J. Zhang and
J. S. Moore, J. Am. Chem. Soc., 1996, 118, 1019; (f) A. J. Gallant,
J. K. H. Hui, F. E. Zahariev, Y. A. Wang and M. J. MacLachlan,
J. Org. Chem., 2005, 70, 7936; (g) R. J. Brea, L. Castedo and
J. R. Granja, Chem. Commun., 2007, 3267; (h) N. Ashkenasy,
S. W. Horn and M. R. Ghadiri, Small, 2006, 2, 99; (i) W. S. Horne,
C. D. Stout and M. R. Ghadiri, J. Am. Chem. Soc., 2003, 125,
9372; (j) D. Ranganthan, Acc. Chem. Res., 2001, 34, 919;
(k) J. L. Sessler, W. Callaway, S. P. Dudek, R. W. Date,
V. Lynch and D. W. Bruce, Chem. Commun., 2003, 2422;
C
130H171N10O30 (M + H+) 2353.2196; found 2353.2183
(M + H+). Anal. calc. for C130H170N10O30: C, 66.36; H,
7.28; N, 5.95; found: C, 66.56; H, 7.21; N, 5.75%.
Experimental procedure of the competition reaction
A
mixture of 4,6-dimethoxy-isophthalic acid (8.7 mg,
0.039 mmol), diacid 9 (15.6 mg, 0.039 mmol), dry CH2Cl2
(20 mL), oxalyl chloride (39.2 mg, 0.309 mmol) and DMF
(4 mL) was stirred for 5 h at room temperature. The solvent
and excess oxalyl chloride were then removed, and the resulting
diacid chloride was dissolved in CH2Cl2 (5 mL). This solution
was then added concurrently to a pre-cooled solution of
diamine salt 1 (50.0 mg, 0.039 mmol) in CH2Cl2 (70 mL)
containing DIEA (54.9 mg, 0.42 mmol) at 0 1C. The reaction
was stirred in an ice bath for 2 h, warmed up to room
temperature, stirred overnight and then heated under reflux
for 2 h. After quenching with CH3OH and removing the
solvent, the residue was triturated with CH3OH and EtOAc.
Filtration provided the crude product.
(l) S. Hoger, Chem.–Eur. J., 2004, 10, 1320; (m) J. Zhang and
¨
J. S. Moore, J. Am. Chem. Soc., 1994, 116, 2655.
5 (a) S. Hoger and A.-D. Meckenstock, Chem.–Eur. J., 1999, 5, 1686;
¨
(b) A. E. Martell, J. Perutka and D. Kong, Coord. Chem. Rev.,
2001, 216, 55.
6 D. W. J. McCallien and J. K. M. Sanders, J. Am. Chem. Soc., 1995,
117, 6611.
7 (a) P. Knops, N. Sendhoff, H. B. Mekelburger and F. Voegtle, Top.
Curr. Chem., 1992, 161, 1; (b) L. Rossa and F. Voegtle, Top. Curr.
Chem., 1983, 113, 1.
8 (a) B. N. Boden, J. K.-H. Hui and M. J. MacLachlan, J. Org.
Chem., 2008, 73, 8069; (b) J. K.-H. Hui and M. J. MacLachlan,
Chem. Commun., 2006, 2480.
9 I. Alfonso, M. Bolte, M. Bru, M. I. Burguete and S. V. Luis,
Chem.–Eur. J., 2008, 14, 8879.
10 W. Zhang and J. S. Moore, J. Am. Chem. Soc., 2006, 127, 11863.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
732 | New J. Chem., 2009, 33, 729–733