Anne-Laure Blayo et al.
FULL PAPERS
ethyl acetate. The combined organic phases were washed
with water, dried (MgSO4) and concentrated under vacuum.
The crude product (yellow oil) was purified by chromatogra-
phy on silica gel (eluent: pentane/Et2O, 8/2) affording the
target pyridine (À)-17 as a pale yellow oil; yield: 173 mg
(85%). The corresponding racemic derivative (Æ)-17 crystal-
lized slowly in the fridge. Rf (pentane/Et2O, 8/2)=0.21.
Series 639, Washington, DC, 1996; b) J. T. Welch, S. Es-
warakrishnan, Fluorine in BioorganicChemistry , Wiley
Interscience, New York, 1991; c) J. T. Welch, Tetrahe-
dron 1987, 43, 3123; d) C. Isanbor, D. OꢁHagan, J. Flu-
orine Chem. 2006, 127, 303; e) J-P. BØguØ, D. Bonnet-
Delpon, J. Fluorine Chem. 2006, 127, 992; f) K. L. Kirk,
J. Fluorine Chem. 2006, 127, 1013, and references cited
therein.
Synthesis of Pyridine (À)-18
[3] For a new synthesis of chiral, non-racemic, benzylic flu-
orides see: D. GrØe, R. GrØe, Tetrahedron Lett. 2007,
48, 5435.
To a suspension of LiAlH4 (52 mg, 1.37 mmol) in anhydrous
THF (1 mL) was added, at 08C under argon and dropwise, a
solution of pyridine (À)-17 (100 mg, 0.27 mmol) in anhy-
drous THF (2 mL). The reaction mixture was stirred at 08C
for 0.5 h and then during 3 h at room temperature. After
cooling to 08C, a saturated aqueous solution of potassium
sodium tartrate (3 mL) was first added and then CH2Cl2
(5 mL). After stirring for a few minutes a clear solution was
obtained and the aqueous solution was extracted with
CH2Cl2. The combined organic layers were washed, dried
(MgSO4) and concentrated under vacuum. The crude prod-
uct (yellow oil) was purified by chromatography on silica gel
(eluent: pentane/EtOAc, 6/4) affording the target pyridine
(À)-18 as a white solid; yield: 74 mg (83%); Chiral HPLC
data (column Chiralpak AD-H, eluent heptane/2-propanol,
90/10, 0.6 mLminÀ1, detection at 205 nm): retention times
for (+)-18: 15.1 min, for (À)-18: 18.2 min. Using these con-
ditions, a 97.3% ee was derived for the above (À)-18
sample.
[4] For recent examples of such pyridines see: H. Paulsen,
C. Schmeck, A. Brandes, G. Schmidt, J. Stoltefuss, S. N.
Wirtz, N. Lçgers, P. Naab, K-D. Bremm, H. Bischoff, D.
Schmidt, S. Zaiss, S. Antons, Chimia, 2004, 58, 490.
[5] F. Bohlmann, D. Rahtz, Chem. Ber. 1957, 90, 2265.
[6] a) M. C. Bagley, C. Glover, E. D. Chevis, Synlett 2005,
649; b) M. C. Bagley, C. Glover, E. A. Merritt, Synlett
2007, 2459, and references cited therein.
[7] a) M. Prakesch, D. GrØe, R. GrØe, Acc. Chem. Res.
2002, 35, 175; b) J. Filmon, D. GrØe, R. GrØe, J. Fluo-
rine Chem. 2001, 107, 271; c) E. Kerouredan, M. Pra-
kesch, D. GrØe, R. GrØe, Lett. Org. Chem. 2004, 1, 87;
d) V. Manthati, D. GrØe, R. GrØe, Eur. J. Org. Chem.
2005, 3825, and references cited therein.
[8] For other recent syntheses and uses of mono- and gem-
difluorinated propargylic derivatives see: a) L. Carroll,
Ma. C. Pacheco, L. Garcia, V. Gouverneur, Chem.
Commun. 2006, 4113; b) S. Arimitsu, G. B. Hammond,
J. Org. Chem. 2007, 72, 8559; c) S. Fustero, B. Fernan-
dez, S. Arimitsu, G. B. Hammond, Org. Lett. 2007, 9,
4251; d) S. Arimitsu, J. M. Jacobsen, G. B. Hammond,
Tetrahedron Lett. 2007, 48, 1625, and references cited
therein.
[9] D. Obrecht, Helv. Chim. Acta 1989, 72, 447.
[10] a) W. J. Middleton, J. Org. Chem. 1975, 40, 574; b) M.
Hudlicky, Org. React. 1988, 35, 513; c) R. P. Singh, J. M.
Shreeve, Synthesis 2002, 2561.
Synthesis of Pyridine (+)-19
To a solution of alcohol (À)-18 (50 mg, 0.15 mmol) in anhy-
drous CH2Cl2 was added, portionwise, freshly prepared
MnO2 (300 mg, 30 equiv.). The reaction mixture was stirred
during 4 h at room temperature and filtered over Celite.
After removal of the solvent under vacuum, the crude prod-
uct was purified by chromatography on silica gel (eluent:
pentane/Et2O, 2/1) affording the target pyridine (+)-19 as a
colourless oil; yield: 42 mg (84%).
[11] See, for instance: V. Madiot, P. Lesot, D. GrØe, J. Cour-
tieu, R. GrØe, Chem. Commun. 2000, 169.
[12] For discussions on the stereoselectivity during the de-
hydroxyfluorination of propargylic alcohols and corre-
sponding cobalt-carbonyl complexes see: a) M. Pra-
kesch, E. Kerouredan, D. GrØe, R. GrØe, J. DeChancie,
K. N. Houk, J. Fluorine Chem. 2004, 125, 537; b) V. L.
Manthati, A. S. K. Murthy, F. Caijo, D. Drouin, P.
Lesot, D. GrØe, R. GrØe, Tetrahedron: Asymmetry
2006, 17, 2306, and references cited therein.
Acknowledgements
We thank Dr. Said Gmouh for his advices in using chiral
HPLC and Ronan Marion for preliminary studies in these
series.
[13] L. Santos, A. Vargas, M. Moreno, B. R. Manzano, J. M.
Lluch, A. Douhal, J. Phys. Chem. A 2004, 108, 9331.
[14] S. Bhattacharya, S. Sengupta, Tetrahedron Lett. 2004,
45, 8733.
References
[1] G. B. Henry, Tetrahedron 2004, 60, 6043, and references
cited therein.
[15] S. Bhattacharya, A. Srivastava, S. Sengupta, Tetrahe-
dron Lett. 2005, 46, 3557.
[2] a) I. Ojima, J. R. McCarthy, J. T. Welch, Biomedical
Frontiers in Fluorine Chemistry, ACS Symposium
476
ꢀ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2008, 350, 471 – 476