450
D. R. Gautam et al. / Tetrahedron Letters 50 (2009) 448–451
5. Guillo, L. A.; Beylot, B.; Vigny, P.; Spassky, A. Photochem. Photobiol. 1996, 64,
349–355.
TS2
TS1
6. Bangar Raju, B.; Eliasson, B. J. Photochem. Photobiol. A 1998, 116, 135–142.
7. Guinn, D. E.; Summers, J. B.; Heyman, H. R.; Conway, R. G.; Rhein, D. A.; Albert,
D. H.; Magoc, T.; Carter, G. W. J. Med. Chem. 1992, 35, 2055–2061.
8. Pars, H. G.; Granchelli, F. E.; Razdan, R. K.; Keller, J. K.; Teiger, D. G.; Rosenberg,
F. J.; Hris, L. S. J. Med. Chem. 1976, 19, 445–454.
9. (a) Mach, U. R.; Hackling, A. E.; Perachon, S.; Ferry, S.; Wermuth, C. G.;
Schwartz, J.-C.; Sokoloff, P.; Stark, H. ChemBioChem 2004, 5, 508–518; (b)
Unangst, P. C.; Capiris, T.; Connor, D. T.; Heffner, T. G.; MacKenzie, R. G.; Miller,
S. R.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1997, 40, 2688–2693; (c) Zhang,
M.-R.; Haradahira, T.; Maeda, J.; Okauchi, T.; Kawabe, K.; Kida, T.; Obayashi, S.;
Suzuki, K.; Suhara, T. Nucl. Med. Biol. 2002, 29, 469–476.
6
4
4
3
2
3
5
5
2
6
1
1
Favored TSa
Not Favored TSb
10. Coumarins: Biology, Applications and Mode of Action; O’Kennedy, R., Thornes, R.
D., Eds.; Wiley: Chichester, 1997.
11. Raev, L. D.; Voinova, E.; Ivanov, I. C.; Popov, D. Pharmazie 1990, 45, 696–
702.
12. Connor, D. T.; Unangst, P. C.; Schwender, C. F.; Sorenson, R. J.; Carethers, M. E.;
Puchalski, C.; Brown, R. E.; Finkel, M. P. J. Med. Chem. 1989, 32, 683–688.
13. Khan, I. A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C.-M. Bioorg.
Med. Chem. Lett. 2005, 15, 3584–3587.
14. (a) Houghton, P. J.; Woldemariam, T. Z.; Mahmood, N. J. Pharm. Pharmacol.
1994, 46, 1061; (b) Houghton, P. J.; Woldemariam, T. Z.; Khan, A. I.; Burke, A.;
Mahmood, N. Antivir. Res. 1994, 25, 235–244.
15. (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew.
Chem., Int. Ed. 2002, 41, 1668–1698 and references cited therein; (b) Boger, D.
L.; Hong, J.; Hikota, M.; Ishida, M. J. Am. Chem. Soc. 1999, 121, 2471–2477; (c)
Boger, D. L.; Ichikawa, S.; Jiang, H. J. Am. Chem. Soc. 2000, 122, 12169–
12173.
16. Behforouz, M.; Ahmadian, M. Tetrahedron 2000, 56, 5259–5288.
17. (a) Boger, D. L. Chem. Rev. 1986, 86, 781–793; (b) Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2000, 39, 3558–3588; (c) Carruthers, W. In Cycloaddition Reactions in
Organic Synthesis; Pergamon: Elmsford, New York, 1990; (d) Boger, D. L.;
Weinreb, S. M. In Hetero Diels Alder Methodology in Organic Synthesis;
C1–C2 = 1.425c
C2–C3 = 1.426
C3–N4 = 1.332
C5–C6 = 1.405
C1–C5 = 1.738
N4–C6 = 2.577
ΔG#TS = 36.81d
C1–C2 = 1.371
C2–C3 = 1.438
C3–N4 = 1.341
C5–C6 = 1.406
C1–C6 = 2.512
N4–C5 = 1.618
ΔG#TS = 41.87
-
e
-
= –591
= –517
ν
ν
ΔΔG#TS = 5.06 kcal/molf
Figure 2. Transition structures optimized at the AM1 level for the interaction of 1
with acrylate 5. (a) TS1: Favored approach of reactants leading to product 6. (b) TS2:
Approach of reactants not leading to products. (c) Bond lengths in Angstroms (Å).
(d) D
G#TS for the transition state in kcal/mol. (e) The imaginary IR frequency for the
newly formed bond. (f) The energy preference of TS1 versus TS2. The numbering of
atoms is arbitrary; only the reacting atoms are indicated.
Academic: San Diego, 1987; Chapters
2 and 9; (e) Weinreb, S. M. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.;
Pergamon: Oxford, 1991; (f) Buonora, P.; Olsen, J. C.; Oh, T. Tetrahedron 2001,
57, 6099–6138; (g) Nicolaides, D. N.; Awad, R. W.; Papageorgiou, G. K.;
Stephanidou-Stephanatou, J. J. Org. Chem. 1994, 59, 1083–1086.
18. (a) Emmanuel-Giota, A.; Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K.
E.; Nicolaides, D. N. J. Heterocycl. Chem. 2001, 38, 717–722; (b) Fylaktakidou, K.
C.; Gautam, D. R.; Hadjipavlou-Litina, D. J.; Kontogiorgis, C. A.; Litinas, K. E.;
Nicolaides, D. N. J. Chem. Soc., Perkin Trans. 1 2001, 3073–3079; (c) Nicolaides,
D. N.; Gautam, D. R.; Litinas, K. E.; Hadjipavlou-Litina, D.; Fylaktakidou, K. C.
Eur. J. Med. Chem. 2004, 39, 323–332.
19. Mandal, T. K.; Kuznetsov, V. V.; Soldatenkov, A. T. Chem. Heterocycl. Compd.
1994, 30, 867–887.
20. Verboom, W.; Van Eijk, P. J. S. S.; Conti, P. G. M.; Reinhoudt, D. N. Tetrahedron
1989, 45, 3131–3138.
21. Chandrasekhar, A.; Padmanabhan, P.; Seshadri, S. Indian J. Chem. 1986, 25B,
137–140.
22. Chatterjea, J. N.; Shaw, S. C.; Prasad, Y.; Singh, R. P. J. Indian Chem. Soc. 1984, LXI,
1028–1031.
transition structures TS1 and TS2 optimized at AM1 level for the
interaction of 1 with acrylate 5 are depicted. The bond lengths
involved in the new cyclohexene ring and the free energy of activa-
tion
D
G# of the activated complex along with the vibrating
frequency of the shorter newly formed bond at 372 K are given.
From both methods, the methylene carbon is predicted to react
first with the diene moiety, since the newly formed bonds (in red
color) of the methylene carbon are shorter in both TS1 and TS2.
On the other hand, the regioselectivity of azomethine imines in
1,3-dipolar cycloaddition reactions with monosubstituted dipol-
arophiles, as in the case of 5, is general well predicted30 and again
in agreement with the obtained results.
In conclusion, we have demonstrated a one-step method for the
construction of complex coumarin[4,3-c]pyridine or piperidin-5-
one polycyclic derivatives in a complete regio- and stereoselective
manner, in moderate overall yields. The direct formation of bis-
cycloadducts 4, 7, and 8 via a unique and novel HDA/1,3-dipolar
cycloaddition pathway opens a new approach toward the facile
one-pot synthesis of complicated heterocyclic scaffolds. Exploita-
tion of these results and further optimization regarding the reac-
tion conditions will be our next goal.
23. Kawase, Y.; Yamaguchi, S.; Maeda, O.; Hayashi, A.; Hayashi, I.; Tabata, K.;
Kondo, M. J. Heterocycl. Chem. 1979, 16, 487–491.
24. (a) Yamaguchi, S.; Tsuzuki, K.; Kinoshita, M.; Oh-hira, Y.; Kawase, Y. J.
Heterocycl. Chem. 1989, 26, 281–284; (b) Takagi, K.; Hubert-Habart, M.;
Cheutin, A.; Royer, R.; Desvoye, M.-L. Bull. Soc. Chim. Fr. 1966, 10, 3136–3139.
25. (a) Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517–1519; (b) Boger,
D. L.; Nakahara, S. J. Org. Chem. 1991, 56, 880–884; (c) Boger, D. L.; Corbett, W.
L.; Curran, T. T.; Kasper, A. M. J. Am. Chem. Soc. 1991, 113, 1713–1729.
26. A solution of oxime ether 1 (0.250 g, 1.23 mmol) in ethyl acrylate (5 mL) was
heated at reflux (100 oC) for 6 days. The reaction mixture was concentrated on
a rotary evaporator, and the residue was purified by chromatography on silica
gel (hexane/EtOAc, 4:1 up to 3:1) to afford in order of elution: unreacted oxime
1 (0.038 g, 15%). Compound 8 (0.045 g, 9%); mp 109–110 oC (ethanol–ether). IR
(Nujol) mmax 1742, 1730, 1720, 1605 cmÀ1 1H NMR (CDCl3, 300 MHz): 1.21 (t,
.
Acknowledgments
J = 7.2 Hz, 3H, 14-CH2CH3), 1.33 (t, J = 7.2 Hz, 3H, 10-CH2CH3), 1.37 (t, J = 7.2 Hz,
3H, 8-CH2CH3), 2.11 (dt, J = 11.0, 4.2 Hz, 1H, 9-Ha), 2.53 (dd, J = 7.1, 2.2 Hz, 2H,
14-H), 2.60 (m, 1H, 13-H), 2.69 (d, J = 19.2 Hz, 1H, 7-Ha), 2.94 (dt, J = 11.0,
2.7 Hz, 1H, 9-Hb), 2.96 (dd, J = 4.2, 2.7 Hz, 1H, 10-H), 3.00 (m, 1H, 13-H), 3.03
(dd, J = 19.2, 1.5 Hz, 1H, 7-Hb), 4.053/4.066 (q, J = 7.2 Hz, 2H, 14-OCH2), 4.269/
4.272 (q, J = 7.2 Hz, 2H, 10-OCH2), 4.279/4.290 (q, J = 7.2 Hz, 2H, 8-OCH2), 5.05
(s, 1H, 11-H), 7.37 (ddd, J = 8.1, 7.2, 1.2 Hz, 1H, 2-H), 7.39 (dd, J = 8.5, 1.2 Hz, 1H,
4-H), 7.56 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H, 3-H), 7.72 (dd, J = 8.1, 1.4 Hz, 1H, 1-H).
13C NMR (CDCl3, 75 MHz) d 14.06 (14-OCH2CH3), 14.10 (10-OCH2CH3), 14.2 (8-
OCH2CH3), 28.5 (C-7), 34.5 (C-14), 38.2 (C-9), 40.9 (C-13), 49.5 (C-10), 59.1 (C-
11), 60.4 (14-OCH2), 61.2 (10-OCH2), 61.5 (8-OCH2), 65.3 (C-8), 117.3 (C-4),
117.7 (C-11b), 119.2 (C-6a), 122.7 (C-1), 124.6 (C-2), 131.4 (C-3), 147.4 (C-11a),
152.7 (C-4a), 160.5 (C-6), 171.6 (10-CO), 172.02 (14-CO), 172.09 (8-CO). MS
(ESI) 472 [M+H]+, 494 [M+Na]+. HRMS calcd for C25H29LiNO8 [M+Li]+:
478.2048, found: 478.1997.
D.R. Gautam thanks State Scholarships Foundation (IKY),
Greece, for financial support and Tribhuvan University, Katmandu,
Nepal, for granting him the PhD study leave.
References and notes
1. Murray, R. D. H.; Mendez, J.; Brown, R. A. The Natural Coumarins; John Wiley &
Sons: New York, 1982.
2. Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N. Curr.
Pharm. Des. 2004, 10, 3813–3833.
3. (a) Nicolaides, D. N.; Fylaktakidou, K. C.; Litinas, K. E.; Hadjipavlou-Litina, D. J.
Eur. J. Med. Chem. 1998, 33, 715–724; (b) Nicolaides, D. N.; Fylaktakidou, K. C.;
Litinas, K. E.; Hadjipavlou-Litina, D. J. J. Heterocycl. Chem. 1998, 35, 619–625; (c)
Nicolaides, D. N.; Fylaktakidou, K. C.; Litinas, K. E.; Hadjipavlou-Litina, D. J. J.
Heterocycl. Chem. 1996, 33, 967–971.
Compound 6 (0.099 g, 35%); mp 236–237 oC (hexane–EtOAc). IR (Nujol) mmax
1730, 1710, 1610 cmÀ1 1H NMR (CDCl3, 300 MHz) d 1.49 (t, J = 7.3 Hz, 3H, 3-
.
OCH2CH3), 4.55 (q, J = 7.3 Hz, 2H, 3-OCH2), 7.43–7.49 (m, 2H, 7-H, 9-H), 7.64
(dd, J = 7.8, 7.3 Hz, 1H, 8-H), 8.25 (d, J = 7.5 Hz, 1H, 10-H), 8.95 (s, 1H, H-4),
4. Darbarwar, V.; Sundaramurthy, V. Synthesis 1982, 337–388.