Brief Articles
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 4 1213
Carbohydr.-Based Drug DiscoVery 2003, 1, 341–355. (c) Christ, W. J.;
Asano, O.; Robidoux, A. L.; Perez, M.; Wang, Y.; Dubuc, G. R.;
Gavin, W. E.; Hawkins, L. D.; McGuinness, P. D.; Mullarkey, M. A.
E5531, a pure endotoxin antagonist of high potency. Science 1995,
268, 80–83. (d) Martin, O.; Zhou, W.; Wu, X.; Front-Deschamps, S.;
Moutel, S.; Schindl, K.; Jeandet, P.; Zbaeren, C.; Bauer, J. A. Synthesis
and Immunobiological Activity of an Original Series of Acyclic Lipid
A Mimics Based on a Pseudodipeptide Backbone. J. Med. Chem. 2006,
49, 6000–6014.
solvent evaporated. Pure product was recovered by trituration in cold
light petroleum (300 mg, 95% yield). Anal. (C40H78NO2) C, H, N.
In Vitro Experiments. All compounds were dissolved in DMSO/
ethanol 1:1 and then diluted in PBS and added 20 µL per well of a
flat-bottom 96-well plate at three different concentrations (1, 5, 10 µM).
The final organic solvent (DMSO/ethanol) concentration per well is
less than 0.5%. HEK-Blue-4 cells were detached by the use of diluted
trypsin-EDTA solution (1/3 in PBS), and the cell concentration was
estimated by using a counting cell. The cells were diluted in HEK-
Blue detection medium (InvivoGen), and 200 µL of cell suspension
(20000 cells) were added to each well. One hour after incubation with
compounds at 37 °C in a CO2 incubator, cells were stimulated with
20 µL of lipid A (0.01 µM) or with TNFR (1 ng/mL) per well. The
plate was incubated at 37 °C in a CO2 incubator for 24 h. Lipid A and
TNFR induce TLR4 pathway activation, leading to alkaline phos-
phatase secretion. The phosphatase activity is detected by the use of
HEK-Blue detection medium, and it can be quantified spectrophoto-
metrically: the plate reading was assessed by using a spectrophotometer
set on 630 nm. As positive control, we treated the cells with lipid A
(0.01 µM) or TNFR (1 ng/mL) alone.
(12) E5564: R-D-Glucopyranose-3-O-decyl-2-deoxy-6-O-[2-deoxy-3-O-[(3R)-
3-methoxydecyl]-6-O-methyl-2-[[(11Z)-1-oxo-11-octadecenyl]amino]-4-
O-phosphono-D-glucopyranosyl]-2-[(1,3-dioxotetradecyl)amino]-1-(dihy-
drogen phosphate), tetrasodium salt. Rossignol, D. P.; Lynn, M. Antagonism
of in vivo and ex vivo response to endotoxin by E5564, a synthetic lipid
A analogue. J. Endotoxin Res. 2002, 8, 483–488.
(13) (a) Yamada, M.; Ichikawa, T.; Ii, M.; Sunamoto, M.; Itoh, K.; Tamura,
N.; Kitazaki, T. Discovery of novel and potent small-molecule
inhibitors of NO and cytokine production as antisepsis agents:
Synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)-
cyclohex-1-ene-1-carboxylate. J. Med. Chem. 2005, 48, 7457–7467.
(b) Ii, M.; Matsunaga, N.; Hazeki, K.; Nakamura, K.; Takashima, K.;
Seya, T.; Hazeki, O.; Kitazaki, T.; Iizawa, Y. A novel cyclohexene
derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclo-
hex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like
receptor 4-mediated cytokine production through suppression of
intracellular signaling. Mol. Pharmacol. 2006, 69, 1288–1295.
(14) Cross, A.; Opal, S. M. Therapeutic intervention in sepsis with antibody
to endotoxin: is there a future? J. Endotoxin Res. 1994, 1, 57–59.
(15) (a) Leturcq, D. J.; Moriarty, A. M.; Talbott, G.; Winn, R. K.; Martin,
T. R.; Ulevitch, R. J. Therapeutic strategies to block LPS interactions
with its receptor. Prog. Clin. Biol. Res. 1995, 392, 473–477. (b) David,
S. A.; Balaram, P.; Mathan, V. I. Characterization of the interaction
of lipid A and lipopolysaccharide with human serum albumin:
Implications for an endotoxin-carrier function for albumin. J. Endotoxin
Res. 1995, 2, 99–106.
(16) (a) Storm, D. R.; Rosenthal, K. Polymyxin and related peptide
antibiotics. A ReV. Biochem. 1977, 46, 723–763. (b) Morrison, D. C.;
Jacobs, D. M. Binding of Polymyxin B to the lipid A portion of
bacterial polysaccharides. Immunochemistry 1976, 13, 813–818.
(17) (a) David, S. A.; Silverstein, R.; Amura, C. R.; Kielian, T.; Morrison,
D. C. Lipopolyamines: Novel antiendotoxin compounds that reduce
mortality in experimental sepsis caused by Gram-negative bacteria.
Antimicrob. Agents Chemother. 1999, 43, 912–919. (b) David, S. A.
Towards a rational development of anti-endotoxin agents: novel
approaches to sequestration of bacterial endotoxin with small mol-
ecules. J. Mol. Recognit. 2001, 14, 370–387. (c) Burns, M. R.; Jenkins,
S. A.; Wood, S. J.; Miller, K.; David, S. A. Structure-activity
relationships in lipopolysaccharide neutralizers: Design, synthesis, and
biological evaluation of a 540-membered amphipathic bisamide library.
J. Comb. Chem. 2006, 8, 32–43.
Lethal Endotoxin Shock Model. For the lethal endotoxin shock
model, C57BL/6J male mice (9 weeks old, Harlan Italy) were
intraperitoneally (ip) injected with 20 mg/kg LPS (from E. coli 055:
B5, Sigma, Italy), and survival of mice was observed over 4 days. All
compounds were dissolved in ethanol:saline (1:9) and administered
ip 30 min before the LPS.
Supporting Information Available: General experimental meth-
ods, synthetic procedures, complete spectroscopic characterization of
target molecules (1H, 13C NMR, MS), full details for the experiments
on HEK cells and mice. This material is available free of charge via
References
(1) Beutler, B.; Jiang, Z.; Georgel, P.; Crozat, K.; Croker, B.; Rutschmann,
S.; Du, X.; Hoebe, K. Genetic analysis of host resistance: toll-like
receptor signaling and immunity at large. Annu. ReV. Immunol. 2006,
24, 353–389.
(2) Ulevitch, R. J.; Tobias, P. S. Recognition of Gram-negative bacteria
and endotoxin by the innate immune system. Curr. Opin. Immunol.
1999, 11, 19–22.
(3) Freudenberg, M. A.; Tchaptchet, S.; Keck, S.; Fejer, G.; Huber, M.;
Schuetze, N.; Beutler, B.; Galanos, C. Lipopolysaccharide sensing an
important factor in the innate immune response to Gram-negative
bacterial infections: benefits and hazards of LPS hypersensitivity.
Immunobiology 2008, 213, 193–203.
(4) Gioannini, T. L.; Teghanemt, A.; Zhang, De, S.; Levis, E. N.; Weiss,
J. P. Monomeric endotoxin:protein complexes are essential for TLR4-
dependent cell activation. J. Endotoxin Res. 2005, 11, 117–123.
(5) Jerala, R. Structural biology of the LPS recognition. Int. J. Med.
Microb. 2007, 297, 353–363.
(18) (a) Miller, K. A.; Kumar, E. V. K.; Wood, S. J.; Cromer, J. R.; Datta,
A.; David, S. A. Lipopolysaccharides sequestrants: structural correlates
of activity and toxicity in novel acylhomospermines. J. Med. Chem.
2005, 48, 2589–2599. (b) Burns, M. R.; Jenkins, S. A.; Kimbrell,
M. R.; Balakrishna, R.; Nguyen, T. B.; Abbo, B. G.; David, S. A.
Polycationic sulfonamides for the sequestration of endotoxin. J. Med.
Chem. 2007, 50, 877–888.
(6) Teghanemt, A.; Widstrom, R. L.; Gioannini, T. L.; Weiss, J. P.
Isolation of Monomeric and Dimeric Secreted MD-2: endotoxin-sCD14
and toll-like receptor 4 ectodomain selectively react with the mono-
meric form of secreted MD-2. J. Biol. Chem. 2008, 283, 21881–21889.
(7) Teghanemt, A.; Prohinar, P.; Gioannini, T. L.; Weiss, J. P. Transfer
of Monomeric Endotoxin from MD-2 to CD14: characterization and
functional consequences. J. Biol. Chem. 2007, 282, 36250–36256.
(8) Gioannini, T. L.; Teghanemt, A.; Zhang, De, S.; Coussens, N. P.;
Dockstader, W.; Ramaswamy, S.; Weiss, J. P. Isolation of an
endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent
cell activation at picomolar concentrations. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 4186–4191.
(19) David, S. A.; Perez, L.; Infante, M. R. Sequestration of bacterial
lipopolysaccharide by bis-arginine gemini compounds. Bioorg. Med.
Chem. Lett. 2002, 12, 357–360.
(20) Peri, F.; Granucci, F.; Costa, B.; Zanoni, I.; Marinzi, C.; Nicotra, F.
Amino and Hydroxylamino Monosaccharides Inhibit Lipid A Stimu-
lated Activation of Human Dendritic Cells and Macrophages. Angew.
Chem., Int. Ed. 2007, 46, 3308–3312.
(21) O’Neill, L. A. When signaling pathways collide: positive and negative
regulation of Toll-like receptor signal transduction. Immunity 2008, 29,
12–20.
(22) Tanga, F. Y.; Raghavendra, V.; De Leo, J. A. Quantitative real-time
RTPCR assessment of spinal microglial and astrocytic activation markers
in a rat model of neuropathic pain. Neurochem. Int. 2005, 45, 397–
407.
(23) Bettoni, I.; Comelli, F.; Rossini, C.; Granucci, F.; Giagnoni, G.; Peri,
F.; Costa, B. Glial TLR4 Receptor as New Target to Treat Neuropatic
Pain: Efficacy of a New Receptor Antagonist in A Model Peripheral
Nerve Injury in Mice. Glia 2008, 56, 1312–1319.
(24) Peri, F.; Nicotra, F. Lipid A antagonists with anti-septic shock,
antiinflammatory, anti-ischemia and analgesic activity. Patent PCT/
EP2007/002279, 2007.
(25) Peri, F.; Marinzi, C.; Barath, M.; Granucci, F.; Urbano, M.; Nicotra,
F. Synthesis and biological evaluation of novel lipid A analogues.
Bioorg. Med. Chem. 2006, 14, 190–199.
(9) Martin, G. S.; Mannino, D. M.; Eaton, S.; Moss, M. The epidemiology
of sepsis in the United States from 1979 through 2000. N. Engl. J. Med.
2003, 348, 1546–1554.
(10) (a) Bernard, G. R.; Vincent, J. L.; Laterre, P. F.; LaRosa, S. P.;
Dhainaut, J. F.; Lopez-Rodriguez, A.; Steingrub, J. S.; Garber, G. E.;
Helterbrand, J. D.; Ely, E. W.; Fisher, C. J. Efficacy and safety of
recombinant human activated protein C for severe sepsis. N. Engl.
J. Med 2001, 344, 699–709. (b) Warren, H. S.; Suffredini, A. F.;
Eichacker, P. Q.; Munford, R. S. Risks and benefits on activated protein
C treatment for severe sepsis. N. Engl. J. Med 2002, 347, 1027–1030.
(11) (a) Hawkins, L. D.; Christ, W. J.; Rossignol, D. P. Inhibition of
endotoxin response by synthetic TLR4 antagonists. Curr. Top. Med.
Chem. 2004, 4, 1147–1171. (b) Christ, W. J.; Hawkins, L. D.; Lewis,
M. D.; Kishi, Y. Synthetic lipid A antagonists for sepsis treatment.
JM801333M