21 The equilibrium position was readily determined by 1H NMR by
allowing various mixtures of 15 and 9 to equilibrate in d4-methanol
to which 10 mol% acetyl chloride had been added. Beginning either
with a mixture of the 2,2¢-bifuranyls 15 or a 1 : 1 mixture of 15 : 9 gave
the equilibrium ratios after 10 hours at room temperature which did
not change after one week. In a separate experiment, a mixture of the
pyrano[3,2-b]pyrans 9 also readily equilibrated to the same mixture of
15 : 9 on stirring in acidic methanol. The pyrano[3,2-b]pyrans 9 exist as
a 1 : 1.3 mixture of diastereomers at equilibrium which is in keeping with
the magnitude of the anomeric effect for 2-methoxytetrahydropyran in
methanol see: R. U. Lemieux, A. A. Pavia, J. C. Martin and K. A.
Watanabe, Can. J. Chem., 1969, 47, 4427.
22 Prior to this work, Nelson reported the equilibration of a 2,2¢-bifuranyl
dimethyl acetal to the corresponding trans-fused pyrano[3,2-b]pyran in
a beautiful synthesis of a ladder toxin intermediate see: J. M. Holland,
M. Lewis and A. Nelson, Angew. Chem., Int. Ed., 2001, 40, 4082; J. M.
Holland, M. Lewis and A. Nelson, J. Org. Chem., 2003, 68, 747.
23 Warren has studied the equilibration of a 2,2¢-bifuranyl with a cis-fused
pyrano[3,2-b]pyran via intermediate epi-sulfonium ions see: J. Carlisle,
D. J. Fox and S. Warren, Chem. Commun., 2003, 2696.
52 S. Abramson, E. Ashkenazi, K. Frische, I. Goldberg, L. Golender,
M. Greenwald, N. G. Lemcoff, R. Madar, S. Weinman and B. Fuchs,
Chem.–Eur. J., 2003, 9, 6071.
53 M. Grabarnik, N. G. Lemcoff, R. Madar, S. Abramson, S. Weinman
and B. Fuchs, J. Org. Chem., 2000, 65, 1636.
54 H. Jatzke, K. Frische, M. Greenwald, L. Golender and B. Fuchs,
Tetrahedron, 1997, 53, 4821.
55 H. Senderowitz, L. Golender and B. Fuchs, Tetrahedron, 1994, 50,
9707.
56 H. Senderowitz, A. Linden, L. Golender, S. Abramson and B. Fuchs,
Tetrahedron, 1994, 50, 9691.
57 L. Norskov, R. B. Jensen and G. Schroll, Acta Chem., Scand. Ser. B:
Org. Chem. Biochem., 1983, 37, 133.
58 The 1H NMR spectra for the C2-symmetric pyrano[3,2-b]pyrans are
not first order; however, the narrow line-width of H-4a and H-8a in all
of the pyrano[3,2-b]pyrans synthesised in this work implies that they
exist predominantly in the O-proximal conformation and hence J4a,8a is
small. Because J4a, 8a is small the 1H NMR spectra of these pyrano[3,2-
b]pyrans is pseudo-first order and meaningful coupling constants can be
extracted. The validity of this assumption was confirmed by simulating
the 1H NMR spectra of a number of the C2-symmetric pyrano[3,2-
b]pyrans reported in this work (see ESI).
24 K. Iijima, W. Fukuda and M. Tomoi, J. Macromol. Sci. Pure Appl.
Chem., 1992, A29, 249.
25 L. A. Paquette and J. A. Oplinger, J. Org. Chem., 1988, 53, 2953.
26 D. Craig, M. W. Pennington and P. Warner, Tetrahedron, 1999, 55,
13495.
59 Crystal structure determination: crystallographic data of sulfone 38 was
collected on the synchrotron radiation source at Station 9.8, Daresbury
SRS, UK, on a Bruker SMART CCD diffractometer. The structures
were solved by direct methods using the program SIR92 (ref. 65). The
refinement (on F) and graphical calculations were performed using the
CRYSTALS (ref. 66) program suite. Crystal data: C15H20O5S, M =
27 Some of the resonances corresponding to 29 in the 1H NMR and 13
C
C
NMR were broad and there were some resonances missing from the 13
NMR which indicated that the anomeric iodides were in intermediate
exchange on the NMR timescale; cooling the sample did not result in
significant sharpening of the resonances.
˚
312.38, Z = 4, monoclinic, space group P21, a◦= 5.5615(17) A, b =
3
˚
˚
˚
27.699(8) A, c = 10.094(3) A, b = 105.644(6) , V = 1497.4(8) A ,
T = 293 K, m = 0.235 mm-1. Of 10048 reflections measured, 6771 were
independent (Rint = 0.02). Final R = 0.0464 (4429 reflections with I >
3s (I)) and wR = 0.0493. Crystallographic data (excluding structure
factors) for this structure have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no. CCDC
698760. Copies of the data can be obtained free of charge on application
to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [Fax:
(internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].
60 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl.
Crystallogr., 1993, 26, 343.
28 C. Baylon, M. P. Heck and C. Mioskowski, J. Org. Chem., 1999, 64,
3354.
29 K. Kadota, T. Kurusu, T. Taniguchi and K. Ogasawara, Adv. Synth.
Catal., 2001, 343, 618.
30 For full structure determination see ESI.
31 The acetates were formed using the method of Gin: L. Shi, Y. J. Kim
and D. Y. Gin, J. Am. Chem. Soc., 2001, 123, 6939.
32 J. Lussmann, D. Hoppe, P. G. Jones, C. Fittschen and G. M. Sheldrick,
Tetrahedron Lett., 1986, 27, 3595.
33 R. L. Halcomb and S. J. Danishefsky, J. Am. Chem. Soc., 1989, 111,
6661.
34 W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377;
R. W. Murray and M. Singh, Org. Synth., 1997, 74, 91.
35 M. Hatanaka and H. Nitta, Tetrahedron Lett., 1987, 28, 69.
36 B. Bessieres and C. Morin, J. Org. Chem., 2003, 68, 4100.
37 L. Alcaraz, A. Cridland and E. Kinchin, Org. Lett., 2001, 3,
4051.
38 We orginally attempted to methylenate the bis-d-lactone 8 with dimethyl
titanocene to give the corresponding bis-exo-cyclic enol ether which
would under go allylic oxidation to give 6 directly. However, exposure
of 8 to dimethyltitanocene delivered solely the bis-endo-cyclic enol
ether 42 in variable yield; the use of the Tebbe reagent resulted
in decomposition. Attempted allylic oxidation of the enol ether 42
with either stoichiometric or catalytic selenium dioxide was also
unsuccessful.
61 D. J. Watkin, C. K. Prout, J. R. Carruthers and P. W. Betteridge,
CRYSTALS Issue 11, Chemical Crystallography Laboratory, Oxford
Uk, 2001; P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout
and D. J. Watkin, J. Appl. Crystallogr., 2003, 36, 1487.
62 A. Furusaki, E. Kurosawa, A. Fukuzawa and T. Irie, Tetrahedron Lett.,
1973, 4579.
63 I. K. Kim, M. R. Brennan and K. L. Erickson, Tetrahedron Lett., 1989,
30, 1757.
64 S. P. Allwein, J. M. Cox, B. E. Howard, H. W. B. Johnson and J. D.
Rainier, Tetrahedron, 2002, 58, 1997.
65 J. D. Rainier and J. M. Cox, Org. Lett., 2000, 2, 2707.
66 U. Majumder, J. M. Cox and J. D. Rainier, Org. Lett., 2003, 5, 913.
67 J. D. Rainier, S. P. Allwein and J. M. Cox, J. Org. Chem., 2001, 66, 1380.
68 D. A. Evans, B. W. Trotter and B. Cote, Tetrahedron Lett., 1998, 39,
1709.
39 D. S. Brown, M. Bruno, R. J. Davenport and S. V. Ley, Tetrahedron,
69 We attempted to convert the asymmetric diol 53b into the symmetric
diol 53a by an oxidation, epimerisation, reduction sequence. Treatment
of the mixture of diols 53 with Jones’ reagent gave the corresponding
separable diketones. Disappointingly, attempted epimerisation of the
resulting diketones under basic conditions resulted in decomposition
(see ESI).
1989, 45, 4293.
40 S. V. Ley, B. Lygo, F. Sternfeld and A. Wonnacott, Tetrahedron, 1986,
42, 4333.
41 J. Sisko, M. Mellinger, P. W. Sheldrake and N. H. Baine, Org. Synth.,
2000, 77, 198.
42 M. Gibert, M. Ferrer, F. SanchezBaeza and A. Messeguer, Tetrahedron,
1997, 53, 8643.
43 M. Ando, A. Akahane, H. Yamaoka and K. Takase, J. Org. Chem.,
1982, 47, 3909.
44 V. S. Joshi, N. p. Damodara and S. Dev, Tetrahedron, 1968, 24, 5817.
45 G. A. Kraus and K. Frazier, J. Org. Chem., 1980, 45, 2579.
46 H. R. Kricheldorf, G. Morber and W. Regel, Synthesis, 1981, 383.
47 R. J. Giguere, G. Von Ilsemann and H. M. R. Hoffmann, J. Org. Chem.,
1982, 47, 4948.
48 S. Tchilibon and R. Mechoulam, Org. Lett., 2000, 2, 3301.
49 R. W. Rickards and W. P. Watson, Aust. J. Chem., 1980, 33, 451.
50 R. W. Hoffmann and I. Munster, Liebigs Ann.-Recl., 1997, 1143.
51 A. G. Santos and R. W. Hoffmann, Tetrahedron: Asymmetry, 1995, 6,
2767.
70 D. Yang and C. Zhang, J. Org. Chem., 2001, 66, 4814.
71 R. Pappo, D. S. Allen, R. U. Lemieux and W. S. Johnson, J. Org. Chem.,
1956, 21, 478.
72 S. L. Schreiber, Z. Y. Wang and G. Schulte, Tetrahedron Lett., 1988, 29,
4085.
73 The acetal carbon in 58 is a chirotopic non-stereogenic centre according
the classification of Mislow see: K. Mislow and J. Siegel, J. Am. Chem.
Soc., 1984, 106, 3319.
74 C. S. Poss, S. D. Rychnovsky and S. L. Schreiber, J. Am. Chem. Soc.,
1993, 115, 3360.
75 H. C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 1973, 96, 1669.
76 S. Krishnamurthy, J. Org. Chem., 1980, 45, 2550.
77 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994,
639.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 238–252 | 251
©