82
N. B. Bongo et al. / Bioorg. Med. Chem. Lett. 19 (2009) 80–82
recognized as a ligand for V8 protease, and has successfully labeled
other proteins possessing specificity toward acidic -amino acid
a
residues. The advantage of N-acylsulfonamide group also demon-
strated the expected cleavability after a brief N-alkylation in mild
basic solution. The cleavability should facilitate the fishing-out of
biotin-tagged proteins as well as peptides from avidin matrices.6
Either the simple synthesis or the multifunctional nature of this
acidic a-amino acid surrogate would be useful as a versatile photo-
reactive building block.
Figure 3. Chemiluminescence detection of proteins photolabeled with the biotinyl
probe 4. The samples containing the enzyme and 4 (1 nmol) were incubated in a
0.1 M potassium phosphate buffer (pH 7.4) with or without the compound 5, and
were subjected to 10% SDS–PAGE. (A) GDH; lanes 1–3: samples irradiated in the
presence of 0, 20, and 200 equiv of 5, respectively; (B) GOT; lanes 4–6: samples
irradiated in the presence of 0, 50, and 100 equiv of 5, respectively; (C) GSyn; lane
7–9: samples irradiated in the presence of 0, 20, and 200 equiv of 5, respectively. M:
molecular size marker. Arrows indicate labeled GDH, GOT, and GSyn, respectively.
Acknowledgments
This research was financially supported by the Ministry of Edu-
cation, Culture, Sports, Science and Technology through Special
Coordination Funds for Promoting Science and Technology, and
also Grants-in-Aid for Scientific Research (18390036 and
20390032). We thank Dr. J.-j. Park for his valuable advices on
cleavage protocol.
References and notes
1. (a) High, S.; Martoglio, B.; Gorlich, D.; Andersen, S. S.; Ashford, A. J.; Giner, A.;
Hartmann, E.; Prehn, S.; Rapoport, T. A.; Dobberstein, B.; Brunner, J. J. Biol.
Chem. 1993, 268, 26745; (b) Chin, J. W.; Martin, A. B.; King, D. S.; Wang, L.;
Schultz, P. G. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11020; (c) Deiters, A.; Cropp, T.
A.; Mukherji, M.; Chin, J. W.; Anderson, J. C.; Schultz, P. G. J. Am. Chem. Soc.
2003, 125, 11782; (d) Suchanek, M.; Radzikowska, A.; Thiele, C. Nat. Methods
2005, 2, 261; (e) Nakashima, H.; Hashimoto, M.; Sadakane, Y.; Tomohiro, T.;
Hatanaka, Y. J. Am. Chem. Soc. 2006, 128, 15092.
2. Hohsaka, T.; Ashizuka, Y.; Taira, H.; Murakami, H.; Sisido, M. Biochemistry 2001,
40, 11060.
3. Farrell, I. S.; Toroney, R.; Hazen, J. L.; Mehl, R. A.; Chin, J. W. Nat. Methods 2005,
2, 377.
Figure 4. (A) Dot-blot analysis of the cleavage of the biotin-tagged photoaffinity
probe 4: (a) photolabeled sample without any treatment, (b) photolabeled sample
after treatment with ICH2COONa (0.4 M) in a borate buffer (0.1 M, pH 9) for 10 min
at room temperature following incubation with NH4OH (0.6 M) for 60 min at room
temperature. (B) Chemiluminescence detection of the photolabeled samples. (C)
Silver staining of the samples in (B): lanes 1, 3: photolabeled sample before
cleavage; lanes 2, 4: photolabeled sample after treatment with ICH2COONa and
NH4OH. M: molecular size marker. Arrows indicate labeled V8 protease (B) and
non-labeled one (C), respectively.
4. (a) Yan, S.; Appleby, T.; Larson, G.; Wu, J. Z.; Hamatake, R. K.; Hong, Z.; Yao, N.
Bioorg. Med. Chem. Lett. 2007, 17, 1991; (b) Rönn, R.; Sabnis, Y. A.; Gossas, T.;
Åkerblom, E.; Danielson, U. H.; Hallberg, A.; Johansson, A. Bioorg. Med. Chem.
2006, 14, 544; (c) Allegretti, M.; Bertini, R.; Cesta, M. C.; Bizzarri, C.; Di Bitondo,
R.; Di Cioccio, V.; Galliera, E.; Berdini, V.; Topai, A.; Zampella, G.; Russo, V.; Di
Bello, N.; Nano, G.; Nicolini, L.; Locati, M.; Fantucci, P.; Florio, S.; Colotta, F. J.
Med. Chem. 2005, 48, 4312.
5. (a) Kenner, G. W.; McDermott, J. R.; Shepard, R. C. J. Chem. Soc., Chem. Commun.
1971, 636; (b) Backs, B. J.; Virgilio, A. A.; Ellman, J. A. J. Am. Chem. Soc. 1996, 118,
3055.
6. Park, J.-j.; Sadakane, Y.; Masuda, K.; Tomohiro, T.; Nakano, T.; Hatanaka, Y.
ChemBioChem 2005, 6, 814.
7. (a) Brown, C. E.; Howe, L.; Sousa, K.; Alley, S. C.; Carrozza, M. J.; Tan, S.;
Workman, J. L. Science 2001, 292, 2333; (b) Peters, C.; Bayer, M. J.; Bühler, S.;
Andersen, J. S.; Mann, M.; Mayer, A. Nature 2001, 409, 581.
8. Barlett, K. N.; Kolakowski, R. V.; Katukojvola, S.; Williams, L. J. Org. Lett. 2006, 8,
823.
9. Manabe, S.; Sugioka, T.; Ito, Y. Tetrahedron Lett. 2007, 48, 787.
10. (a) Heymann, H.; Ginsberg, T.; Gulick, Z. R.; Konopka, E. A.; Mayer, R. L. J. Am.
Chem. Soc. 1959, 81, 5125; (b) Ross, D. L.; Skinner, C. G.; Shive, W. J. Org. Chem.
1959, 24, 1372.
protease within 30 min at pH 9. Dot (b) is the photolabeled product
after the N-alkylation using sodium iodoacetate following treat-
ment with ammonium hydroxide solution for 60 min at room tem-
perature. The significant decrease of signal indicates the loss of the
biotinyl amino acid moiety from the labeled protein. One of impor-
tant point is to define the undesired effects of alkylation on pro-
teins. The use of iodoacetic acid sodium salt has the advantage to
share the well-established S-carboxymethylation conditions19 for
minimizing possible damages on proteins during N-alkylation of
acylsulfonamide group. To confirm this observation, the labeled
samples ‘before’ and ‘after’ the cleavage were subjected to SDS–
PAGE (lanes 1, 3 and lanes 2, 4, respectively) and chemilumines-
cence detection (panel B) was performed as well as the silver stain-
ing of the gel (panel C). The densitometry of the emission band due
to the labeled V8 protease revealed that 10-min alkylation with
iodoacetic acid sodium salt was enough for the completion of the
cleavage. The silver staining of the gel indicates that no aggrega-
tion or degradation of the protein occurred during the cleavage
process. The cleavability of acylsulfonamide was already revealed
within proteins captured on avidin-matrix.6
11. Compound 4 as a white solid. 1H NMR (400 MHz, CD3OD, TMS): d 7.90 (2H, d,
J = 7.2 Hz), 7.33 (2H, d, J = 8 Hz), 4.69 (1H, t, J = 7.4 Hz), 4.48 (1H, dd, J = 4.2,
7.8 Hz), 4.28 (1H, dd, J = 4.6, 7.8 Hz), 4.09 (1H, dd, J = 7.2, 14.4 Hz), 3.50–3.76
(13H, m), 3.15–3.25 (1H, m), 2.91 (1H, dd, J = 5.2, 10.2 Hz), 2.69 (1H, d,
J = 12.8 Hz), 2.18 (2H, t, J = 7.4 Hz), 1.50–1.80 (4H, m), 1.43 (9H, s), 1.21–
1.30 ppm (2H, m); 13C NMR (400 MHz, CD3OD, TMS): d 176.0, 168.8, 165.9,
150.7, 137.0, 133.0, 129.5, 129.0, 127.6, 121.7, 80.9, 79.4, 71.3, 70.5, 63.3, 61.6,
56.9, 56.6, 54.8, 41.0, 40.3, 36.7, 30.7, 29.7, 29.4, 28.6, 26.8, 20.8, 14.4 ppm.
12. (a) Tomohiro, T.; Hashimoto, M.; Hatanaka, Y. Chem. Rec. 2005, 5, 385; (b)
Hashimoto, M.; Hatanaka, Y. Eur. J. Org. Chem. 2008, 2513.
13. Drapeau, G. R. Methods Enzymol. 1976, 45, 469.
14. Hatanaka, Y.; Hashimoto, M.; Kanaoka, Y. J. Am. Chem. Soc. 1998, 120, 453.
15. Houmard, J. Int. J. Pept. Protein Res. 1976, 8, 199.
16. Sakamoto, N.; Kotre, A. M.; Savageau, M. A. J. Bacteriol. 1975, 124, 775.
17. Lain-Guelbenzu, B.; Munoz-Blanco, J.; Cardenas, J. Eur. J. Biochem. 1990, 188,
529.
18. Stadtman, E. R.; Ginsburg, A.. In The Enzymes; Boyer, P. D., Ed.; Academic Press:
New York, 1974; Vol. 10, pp 755–807.
In summary, a diazirinyl photophore was easily introduced into
the sulfonamide side chain of
a-amino acid to yield the acidic and
cleavable photoprobes. The biotinyl probe has been specifically
19. Hirs, C. H. W. Methods Enzymol. 1967, 11, 199.