Journal of the American Chemical Society
Page 4 of 5
A. J.; Milo, A.; Sigman, M. S.; Toste, F. D. J. Am. Chem. Soc. 2016, 138,
3863.
(5) (a) Braun, M.-G.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 12990.
(b) Talbot, E. P. A.; de A. Fernandes, T.; McKenna, J. M.; Toste, F. D. J.
Am. Chem. Soc. 2014, 136, 4101. (c) He, Y.; Yang, Z.; Thornbury, R. T.;
Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
1
2
3
4
5
6
7
8
(6) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Nat Chem. 2017, 9,
546.
(7) (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069. (b)
Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am.
Chem. Soc. 2016, 138, 9357. (c) Wang, F.; Wang, D.; Wan, X.; Wu, L.;
Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547. (d) Wu, L.; Wang,
F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139,
2904.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) For reviews on the functionalization of alkenes with electrophilic
reagents, see: (a) Li, G.; Kotti, S. R. S. S.; Timmons, C. Eur. J. Org. Chem.
2007, 2745. (b) Castellanos, A.; Fletcher, S. P. Chem. Eur. J. 2011, 17,
576. (c) Hennecke, U. Chem. Asian J. 2012, 7, 456. (d) Denmark, S. E.;
Kuester, W. E.; Burk, M. T. Angew. Chem. Int. Ed. 2012, 51, 10938. (e)
Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076. (f) Tan, C. K.;
Yeung, Y.-Y. Chem. Commun. 2013, 49, 7985. (g) Zheng, S.; Schiene-
beck, C. M.; Zhang, W.; Wang, H.-Y.; Tang, W. Asian J. Org. Chem.
2014, 3, 366. (h) Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Org. Biomol.
Chem. 2014, 12, 2333. (i) Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E.
Angew. Chem. Int. Ed. 2015, 54, 15642.
(9) For selected examples on the synthesis of achiral CF3S-compounds,
see: (a) Ferry, A.; Billard, T.; Langlois, B. R.; Bacqué, E. Angew. Chem.
Int. Ed. 2009, 48, 8551. (b) Chen, C.; Chu, L.; Qing, F.-L. J. Am. Chem.
Soc. 2012, 134, 12454. (c) Alazet, S.; Zimmer, L.; Billard, T. Angew.
Chem. Int. Ed. 2013, 52, 10814. (d) Liu, J.; Chu, L.; Qing, F.-L. Org. Lett.
2013, 15, 894. (e) Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.;
Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782. (f) Pluta, R.;
Nikolaienko, P.; Rueping, M. Angew. Chem. Int. Ed. 2014, 53, 1650. (g)
Arimori, S.; Takada, M.; Shibata, N. Org. Lett. 2015, 17, 1063. (h) Guo,
S.; Zhang, X.; Tang, P. Angew. Chem. Int. Ed. 2015, 54, 4065. (i) Wu, H.;
Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew. Chem.
Int. Ed. 2015, 54, 4070. (j) Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F.
J. Am. Chem. Soc. 2015, 137, 4164. (k) Mukherjee, S.; Maji, B.; Tlahuext-
Aca, A.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 16200.
(10) (a) Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I.; Rueping, M.
Angew. Chem. Int. Ed. 2013, 52, 12856. (b) Wang, X.; Yang, T.; Cheng,
X.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 12860. (c) Deng, Q.-H.;
Rettenmeier, C.; Wadepohl, H.; Gade, L.-H.; Chem. Eur. J. 2014, 20, 93.
(d) Zhu, X.-L.; Xu, J.-H.; Cheng, D.-J.; Zhao, L.-J.; Liu, X.-Y.; Tan, B.
Org. Lett. 2014, 16, 2192. (e) Zhao, B.-L.; Du, D.-M. Org. Lett. 2017, 19,
1036. (f) Zhang, Z.; Sheng, Z.; Yu, W.; Wu, G.; Zhang, R.; Chu, W.-D.;
Zhang, Y.; Wang, J. Nat. Chem. 2017, 9, 970.
(11) (a) Luo, J.; Zhu, Z.; Liu, Y.; Zhao, X. Org. Lett. 2015, 17, 3620. (b)
Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Angew. Chem. Int. Ed. 2016,
55, 5846. (c) Luo, J.; Liu, Y.; Zhao, X. Org. Lett. 2017, 19, 3434. (d) Luo,
J.; Liu, X.; Zhao, X. Synlett 2017, 28, 397. (e) Luo, J.; Cao, Q.; Cao, X.;
Zhao, X. Nat. Commun. 2018, 9, 527.
(12) (a) Denmark, S. E.; Kalyani, D.; Collins, W. R. J. Am. Chem. Soc.
2010, 132, 15752. (b) Denmark, S. E.; Kornfilt, D. J. P.; Vogler, T. J. Am.
Chem. Soc. 2011, 133, 15308. (c) Denmark, S. E.; Jaunet, A. J. Am. Chem.
Soc. 2013, 135, 6419. (d) Chen, F.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem.
Soc. 2013, 135, 1232. (e) Denmark, S. E.; Chi, H. M. J. Am. Chem. Soc.
2014, 136, 3655. (f) Denmark, S. E.; Chi, H. M. J. Am. Chem. Soc. 2014,
136, 8915. (g) Denmark, S. E.; Rossi, S.; Webster, M. P.; Wang, H. J. Am.
Chem. Soc. 2014, 136, 13016. (h) Denmark, S. E.; Hartmann, E.; Kornfilt,
D. J. P.; Wang, H. Nat. Chem. 2014, 6, 1056. (i) Denmark, S. E.; Chi, H.
M. J. Org. Chem. 2017, 82, 3826. (j) Denmark, S. E.; Kornfilt, D. J. P. J.
Org. Chem. 2017, 82, 3192.
(13) (a) Braga, A. L.; Lüdtke, D. S.; Vargas, F. Curr. Org. Chem. 2006,
10, 1921. (b) Braga, A. L.; Lüdtke, D. S.; Vargas, F.; Braga, R. C. Synlett
2006, 1453. (c) Lewis Base Catalysis in Organic Synthesis; Vedejs, E.,
Denmark, S. E., Eds.; Wiley-VCH: Weinheim, 2016.
(14) When electrophilic N-(4-MeC6H4S)succinimide was used instead
of (PhSO2)2NSCF3 under the similar conditions, no C–S(4-MeC6H4) stere-
ogenic product was observed (see Supporting Information). So the special
property of trifluoromethylthiiranium ion might lead to the occurrence of
reactions.
In summary, we have developed efficient approaches toward
enantioselective allylic C–H trifluoromethylthiolation and inter-
molecular difunctionalization of alkenes by chiral selenide cataly-
sis. Notably, these transformations proceeded without an addi-
tional binding group assistance. As practical applications, the
products were further converted into various valuable compounds
and the reaction was scaled up to gram-scale with low catalyst
loading (0.5 mol%). This work provides a new pathway for the
synthesis of C–SCF3 stereogenic compounds and implicates the
possibility of successful enantiocontrol in other types of alkene
functionalizations without a directing group assistance.
Experimental details, characterization data, NMR spectra of new
compounds, and HPLC traces. This material is available free of
*E-mail: zhaoxd3@mail.sysu.edu.cn
The authors declare no competing financial interest.
We thank the “One Thousand Youth Talents” Program of China,
the National Natural Science Foundation of China (Grant No.
21772239), and the Natural Science Foundation of Guangdong
Province (Grant No. 2014A030312018) for financial support.
(1) (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (b) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem.
2010, 131, 140. (d) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D.
J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(2) (a) Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214.
(b) Ma, J.-A.; Cahard, D. Chem. Rev. 2018, 108, PR1-PR43. (c) Liang, T.;
Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214. (d)
Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
(e) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.;
Paquin, J.-F. Chem. Rev. 2015, 115, 9073.
(3) (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014,
2415. (b) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115,
731. (c) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48,
1227. (d) Barata-Vallejo, S.; Bonesi, S.; Postigo, A. Org. Biomol. Chem.
2016, 14, 7150.
(4) (a) Wu, J.; Wang, Y.-M.; Drljevic, A.; Rauniyar, V.; Phipps, R. J.;
Toste, F. D. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 13729. (b) Zi, W.;
Wang, Y.-M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 12864. (c) Neel,
(15) Common 1,2-disubstituted alkenes such as 1-phenylpropene and 1-
phenylbutene did not work under the similar conditions (see Supporting
ACS Paragon Plus Environment