638
W. Su et al. / Tetrahedron Letters 50 (2009) 636–639
NC
CN
NC
CN
NO2
5mol%Cu(OTf)2/Et3N
S
+
NO2
CH
3CN, rt, 6h
S
H3CO
H3CO
6c
1c
Scheme 1. Reaction to obtain the intermediate 6c.
Miller, K. D.; Sledge, G. W.; Zheng, Q.-H. Bioorg. Med. Chem. Lett. 2006, 16, 4102;
(d) Nakamura, H.; Sasaki, Y.; Uno, M.; Yoshikawa, T.; Asano, T.; Ban, H. S.;
Fukazawa, H.; Shibuya, M.; Uehara, Y. Bioorg. Med. Chem. Lett. 2006, 16, 5127;
(e) Kaiah, T.; Lingaiah, B. P. V.; Narsaiah, B.; Shireesha, B.; Kumar, B. A.; Gururaj,
S.; Pathasarathy, T.; Sridhar, B. Bioorg. Med. Chem. Lett. 2007, 17, 3445; (f)
Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cara, G. L.; Preti, D.; Fruttarolo, F.;
Parani, M. G.; Tabrizi, M. A.; Tolomeo, M.; Grimando, S.; Cristina, A. D.;
Balazarini, J.; Hadfield, J. A.; Brancale, A.; Hamel, E. J. Med. Chem. 2007, 50,
2273; (g) Zhong, W.; Liu, H.; Kaller, M. R.; Henley, C.; Magal, E.; Nguyen, . T.;
Osslund, T. D.; Powers, D.; Rzasa, R. M.; Wang, H.-L.; Wang, W.; Xiong, X.;
Zhang, J.; Norman, M. H. Bioorg. Med. Chem. Lett. 2007, 17, 5384.
Cu(OTf)2
N
N
H
N
X
X
X
NO2
O2N
R1
R1
R1
R3
R3
R2
R2
R2
Et3N
NH
1
2
6
or
3
NH2
NH2
R2
X
NO2
R3
2. (a) Olah, G. In Friedel–Crafts and Related Reactions; Wiley Inter-science: New
York, 1963; vols. I–IV; (b) Pearson, D. E.; Buehler, C. A. Synthesis 1972, 533.
3. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102,
1359.
4. Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
5. (a) Trost, B. M. Science 1991, 254, 1471; (b) Trost, B. M. Angew. Chem., Int. Ed.
Engl. 1995, 34, 259.
6. (a) Wang, H.; Huang, J.; Wulff, W. D.; Rheingold, A. L. J. Am. Chem. Soc. 2003,
125, 8980; (b) Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. J. Am. Chem. Soc.
2002, 124, 6512.
X
NO2
H
X
NO2
R3
[O]
Air
R1
R1
R3
R1
R2
R2
X = CN or CO2Et
Scheme 2. Plausible reaction mechanism of 1 or 2 with nitroolefins.
4
5
or
7. (a) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125,
10921; (b) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am.
Chem. Soc. 2002, 124, 12650; (c) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem.
Soc. 2004, 126, 7458.
To extend the scope of this reaction, other activated
a-methy-
lene alkenes, such as Knoveangal products 2 of ketones with ethyl
cyanoacetate, were made to react with nitroolefins 3 using the
present protocol. The formation of 5 from 2 required longer time
(8 h). In general, probably due to the comparatively weaker elec-
tron-withdrawing ability of COOEt than CN, these reactions gave
significantly lower yields than that of vinyl malononitriles with
nitroolefins. The products, a series of ethyl 2-amino-3-nitro benzo-
ates derivatives 5, were obtained in moderate yields. The results
are summarized in Table 3.
In addition, reaction of 2-(1-(4-methoxyphenyl)ethylidene)
malononitrile (1c) with (E)-2-(2-nitrovinyl)thiophene was carried
out at room temperature and was catalyzed by 5 mol % Cu(OTf)2
and 5 mol % Et3N for 6 h (Scheme 1). The detection of the Mi-
chael intermediate 6c indicates the ionic path of the whole
cyclocondensation.15
8. Langer, P.; Bose, G. Angew. Chem., Int. Ed. 2003, 42, 4033.
9. (a) Somogyi, L.; Debrecen, H. J. Hetero. Chem. 2007, 44, 1235; (b) Katritzky, A. R.;
Marson, C. M. J. Org. Chem. 1987, 52, 2726; (c) Katrizky, A. R.; Marson, C. M.;
Palenik, G.; Koziol, A. E.; Luce, H.; Karelson, M.; Chen, B. C.; Brey, W. Tetrahedron
1988, 44, 3209.
10. (a) Milart, P.; Wilamowski, J.; Sepiol, J.-J. Tetrahedron 1998, 54, 15643; (b)
Gewald, K.; Schill, W. J. Prakt. Chem. 1971, 313, 678; (c) Wang, X. S.; Zhang, M.
M.; Li, Q.; Yao, C. S.; Tu, S. J. Tetrahedron 2007, 63, 5265.
11. Xue, D.; Li, J.; Zhang, Z.-T.; Deng, J.-G. J. Org. Chem. 2007, 72, 5443.
12. (a) Su, W.; Li, J.; Zheng, Z.; Shen, Y. Tetrahedron Lett. 2005, 46, 6037; (b) Su, W.;
Jin, C. Org. Lett. 2007, 9, 993; (c) Su, W.; Hong, Z.; Shan, W.; Zhang, X. Eur. J. Org.
Chem. 2006, 2723; (d) Chen, J.; Wu, H.; Zheng, Z.; Jin, C.; Zhang, X.; Su, W.
Tetrahedron Lett. 2006, 47, 5383; (e) Yu, C.; Dai, X.; Su, W. Synlett 2007, 646; (f)
Su, W.; Chen, J.; Wu, H.; Jin, C. J. Org. Chem. 2007, 72, 4524.
13. General procedure for the synthesis of 2-amino-3-nitro-benzonitriles. To a mixture
of vinyl malononitrile (1 mmol) and nitroolefin (1 mmol) in CH3CN (3 mL),
Cu(OTf)2 (0.05 mmol, 18 mg) and triethylamine (0.05 mmol, 5 mg) were added.
The reaction mixture was stirred at reflux for 5 h. After the completion of the
reaction, EtOAc (15 mL) was added to dilute the reaction solution. Then, the
mixture was washed with water and brine. The combined organic phases were
dried and concentrated in vacuo, and the residue was purified by column
chromatography (hexane/AcOEt = 8:1) to afford compounds 4.
Based on the experimental results, a plausible mechanism was
proposed in Scheme 2, involving the Michael addition of activated
14. General procedure for the synthesis of ethyl 2-amino-3-nitro-benzoates. To a
mixture of 2 (1 mmol) and nitroolefin (1 mmol) in CH3CN (3 mL), Cu(OTf)2
(0.05 mmol, 18 mg) and triethylamine (0.05 mmol, 5 mg) were added. The
reaction mixture was stirred at reflux for 8 h. After the completion of the
reaction, EtOAc (15 mL) was added to dilute the reaction solution. Then, the
mixture was washed with water and brine. The combined organic phases were
dried and concentrated in vacuo, and the residue was purified by column
chromatography (hexane/AcOEt = 8:1) to afford compounds 5.
15. Procedure for the synthesis of 6c. To a mixture of 1c (1 mmol) and (E)-2-(2-
nitrovinyl)thiophene (1 mmol) in CH3CN (3 mL), Cu(OTf)2 (0.05 mmol, 18 mg)
and triethylanmine (0.05 mmol, 5 mg) were added. The reaction mixture was
stirred at room temperature for 6 h. After the completion of the reaction, EtOAc
(15 mL) was added to dilute the reaction solution. Then, the mixture was
washed with water and brine. The combined organic phases were dried and
concentrated in vacuo, and the residue was purified by column
a
-methylene alkenes and nitroolefins, the cyclation catalyzed by
Cu(OTf)2 and Et3N, and the oxidation in atmosphere.
In summary, we have developed a simple, convenient and effi-
cient synthetic protocol for polysubstituted benzenes using
Cu(OTf)2/Et3N as a novel catalytic system in CH3CN. The simplicity,
efficiency, easy work-up, short reaction time, and the need for cat-
alytic amount of base make it a preferred procedure for the prep-
aration of polysubstituted benzenes.
Acknowledgments
We thank the National Key Technology R&D Program
2007BAI34B00 and National Natural Science Foundation of China
[20676123] for financial support.
chromatography (hexane/AcOEt = 10:1) to afford the 6c as
crystalline powder.
a yellow
Spectral data for selected products:
3-Amino-2-nitro-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile (4h): Yellow
crystals, mp 201–202 °C (201.2–203.4 °C11), yield: 80%. 1H NMR (500 MHz,
CDCl3): d 8.24 (t, J = 2.0 Hz, 1H), 7.40–7.47 (m, 5H), 7.28 (dd, J1 = 6.5 Hz,
J2 = 8.5 Hz, 1H), 7.20–7.22 (m, 2H), 5.66 (s, 2H), 2.63–2.65 (m, 2H), 2.38–2.40
(m, 2H). 13C NMR (125 Hz, CDCl3): d 143.3, 142.5, 140.4, 139.8, 135.7, 131.1,
130.5, 128.8, 128.6, 128.0, 127.9, 127.4, 127.1, 117.2, 95.4, 29.1, 26.0. IR (KBr)
References and notes
1. Recent selected examples: (a) Warshakoon, N. C.; Sheville, J.; Bhatt, R. T.; Ji, W.;
Mendez-Andino, J. L.; Meyers, K. M.; Kim, N.; Wos, J. A.; Mitchell, C.; Paris, J. L.;
Pinney, B. B.; Reizes, O.; Hu, X. E. Bioorg. Med. Chem. Lett. 2006, 16, 5207; (b)
Frazier, K.; Jazan, E.; McBride, C. M.; Pecchi, S.; Renhowe, P. A.; Shafer, C. M.;
Taylor, C.; Bussiere, D.; He, M. M.; Jansen, J. M.; Lapointe, M.; Ma, S.; Vora, J.;
Wiesmann, J. Bioorg. Med. Chem. Lett. 2006, 16, 2247; (c) Wang, J. Q.; Gao, M.;
m
max: 3466, 3382, 2214, 1620, 1512, 920, 706 cmÀ1. MS (EI): m/z (%) = 341 (54,
M+), 305 (100).
3-Amino-5-(furan-2-yl)-4-nitrobiphenyl-2-carbonitrile (4n): Yellow crystals,
mp 164–165 °C, yield: 83%. 1H NMR (500 MHz, CDCl3): d 7.50–7.58 (m, 5H),