ORGANIC
LETTERS
2009
Vol. 11, No. 4
1003-1006
A New Artificial ꢀ-Sheet That Dimerizes
through Parallel ꢀ-Sheet Interactions
Sergiy Levin and James S. Nowick*
Department of Chemistry, UniVersity of California, IrVine,
IrVine, California 92697-2025
Received December 31, 2008
ABSTRACT
This paper introduces a chemical model of a ꢀ-sheet that dimerizes through parallel ꢀ-sheet interactions in CDCl3 solution. The model consists
of two C-terminally linked dipeptides connected to a molecular template. 1H NMR studies establish the ꢀ-sheet folding and dimerization of the
model system. This system corroborates that linking two peptide strands and blocking one edge of the assembly creates soluble, easy-to-
study systems that participate in the types of interactions that occur widely in peptide and protein aggregates.
Intermolecular parallel ꢀ-sheet interactions occur widely in
peptide and protein aggregation and are important in Alzhe-
imer’s and a variety of other neurodegenerative disorders.1
These noncovalent interactions are difficult to study because
they often occur in an uncontrolled fashion and lead to
insoluble aggregates. We recently reported the first well-
defined chemical model system with which to study inter-
molecular parallel ꢀ-sheet formation.2 Here, we report a
second chemical model system that forms well-defined
dimers through parallel ꢀ-sheet formation.3
In our first system, we achieved dimer formation by
N-terminally linking two short peptides with a succinic acid
unit and blocking one of the exposed hydrogen-bonding
edges with a molecular template. In the new system, we
(1) (a) Petkova, T. A.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.;
Leapman, R. D.; Delaglio, F.; Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 16742–16747. (b) Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen,
A. Ø.; Riekel, C.; Grothe, R.; Eisenberg, D. Nature 2005, 435, 773–778.
(c) Ritter, C.; Maddelein, M-L.; Siemer, A. B.; Lu¨hrs, T.; Ernst, M.; Meier,
B. H.; Saupe, S. J.; Riek, R. Nature 2005, 435, 844–848. (d) Lu¨hrs, T.;
Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Do¨beli, H.; Schubert,
D.; Riek, R. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17342–17347. (e)
Shewmaker, F.; Wickner, R. B.; Tycko, R Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 19754–19759. (f) Sawaya, M. R.; Sambashivan, S.; Nelson, R.;
Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie,
M.; Wiltzius, J. J. W.; MacFarlane, H. T.; Madsen, A. Ø.; Riekel, C.;
Eisenberg, D. Nature 2007, 447, 453–457. (g) Wickner, R. B; Dyda, F.;
Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2403–2408. (h)
Shewmaker, F; Ross, E. D.; Tycko, R.; Wickner, R. B. Biochemistry 2008,
47, 4000–4007. (i) Madine, J.; Jack, E.; Stockley, P. G.; Radford, S. E.;
Serpell, L. C; Middleton, D. A. J. Am. Chem. Soc. 2008, 130, 14990–15001.
(2) Levin, S.; Nowick, J. S. J. Am. Chem. Soc. 2007, 129, 13043–13048.
(3) Nowick, J. S. Acc. Chem. Res. 2008, 41, 1319–1330.
10.1021/ol802993v CCC: $40.75
Published on Web 01/27/2009
2009 American Chemical Society