3044
Y. Nishihara et al.
LETTER
(4) (a) Mori, A.; Shimada, T.; Kondo, T.; Sekiguchi, A. Synlett
2001, 649. (b) Mori, A.; Mohamed Ahmed, M. S.;
Sekiguchi, A.; Masui, K.; Koike, T. Chem. Lett. 2002, 756.
(c) Mohamed Ahmed, M. S.; Mori, A. Tetrahedron 2004,
60, 9977. (d) Mohamed Ahmed, M. S.; Sekiguchi, A.;
Masui, K.; Mori, A. Bull. Chem. Soc. Jpn. 2005, 78, 160.
(5) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 4467.
(6) (a) Herrmann, W. A.; Böhm, V. P. W.; Reisinger, C. P.
J. Organomet. Chem. 1998, 576, 23. (b) Alonso, D. A.;
Nájera, C.; Pacheco, M. C. Org. Lett. 2000, 2, 1283.
(c) Alonso, D. A.; Najera, C.; Pacheco, M. C. Tetrahedron
Lett. 2002, 43, 9365. (d) Alonso, D. A.; Najera, C.; Pacheco,
M. C. Adv. Synth. Catal. 2003, 345, 1146. (e) Alacid, E.;
Alonso, D. A.; Botella, L.; Nájera, C.; Pacheco, M. C. Chem.
Rec. 2006, 6, 117.
(7) (a) Bohm, V. P. W.; Herrmann, W. A. Eur. J. Org. Chem.
2000, 3679. (b) Pal, M.; Parasuraman, K.; Gupta, S.;
Yeleswarapu, K. R. Synlett 2002, 14, 1976. (c) Fukuyama,
T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett.
2002, 4, 1691. (d) Uozumi, Y.; Kobayashi, Y. Heterocycles
2003, 59, 71. (e) Urgaonkar, S.; Verkade, J. G. J. Org.
Chem. 2004, 69, 5752. (f) Heuzé, K.; Méry, D.; Gauss, D.;
Blais, J.-C.; Astruc, D. Chem. Eur. J. 2004, 10, 3936.
(g) Liang, B.; Dai, M.; Chen, J.; Yang, Z. J. Org. Chem.
2005, 70, 391. (h) Liang, B.; Huang, M.; You, Z.; Xiong, Z.;
Lu, K.; Fathi, R.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70,
6097. (i) Cwik, A.; Hell, Z.; Figueras, F. Tetrahedron Lett.
2006, 47, 3023. (j) Kawanami, H.; Matsushima, K.; Sato,
M.; Ikushima, Y. Angew. Chem. Int. Ed. 2007, 46, 5129.
(k) Shi, S.; Zhang, Y. Synlett 2007, 1843. (l) Ljungdahl, T.;
Bennur, T.; Dallas, A.; Emtenaes, H.; Maartensson, J.
Organometallics 2008, 27, 2490.
ethynes 3 as the product and regeneration of the Pd(0) cat-
alyst. After transmetalation of an alkynyl group in 5 to
palladium is completed, CuCl is also regenerated to allow
it to be the catalyst.
In regard to the oxidative addition step, the pioneering
studies of the palladium-catalyzed cross-couplings of aryl
chlorides suggested that an electron-rich and sterically
bulky phosphine and N-heterocyclic carbene ligands may
activate a less reactive carbon–chlorine bond.11a We earli-
er observed that copper(I) chloride seems to play an im-
portant role in generation of an alkynylcopper species 5
via cleavage of the carbon–silicon bond due to the good
match of the silicon and chloride anion of the copper
salt.26 In conjunction with the observation that PCy3 and
Pt-Bu3 gave poor results (Table 1, entries 4 and 5) and ex-
cess amount of CuCl can retard the desired cross-coupling
reaction (Table 2, entries 2 and 3), we postulate that the
mutual decelerating effect between the nucleophilic phos-
phine ligands and the added CuCl occurs in the oxidative
addition and transmetalation steps for the catalytic cycle.
If the oxidative addition of aryl chlorides is suppressed by
the interaction of the phosphine ligands with CuCl, the
catalytic reaction would become less efficient.
In conclusion, we have developed the synthesis of unsym-
metrical diarylethynes in moderate to good yields by the
direct cross-coupling of activated aryl chlorides with
alkynylsilanes catalyzed by Pd(OAc)2/(–)-DIOP and
CuCl as a neutral activator.27 Although the yields need im-
provement, the present coupling reaction is straightfor-
ward with great synthetic potential. Aryl chlorides are
readily available, and this reaction provides a facile meth-
odology via direct carbon–silicon bond activation of the
substrates. Detailed studies of the mechanism, as well as
further investigation of the scope and limitations of this
chemistry, are in progress.
(8) (a) Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.;
Hirabayshi, K.; Nishihara, Y. Org. Lett. 2000, 2, 2935.
(b) Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui, K.;
Mori, A. Org. Lett. 2005, 7, 5083.
(9) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem.
Int. Ed. 2000, 39, 2632.
(10) (a) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu,
G. C. Org. Lett. 2000, 2, 1729. (b) Böhm, V. P. W.;
Herrmann, W. A. Eur. J. Org. Chem. 2000, 3679.
(c) Alami, M.; Crousse, B.; Ferri, F. J. Organomet. Chem.
2001, 624, 114. (d) Soheili, A.; Albaneze-Walker, J.; Murry,
J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191.
(11) (a) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41,
4176; and references therein. (b) Eberhard, M. R.; Wang,
Z.; Jensen, C. M. Chem. Commun. 2002, 818.
Acknowledgement
The authors gratefully thank Prof. Atsunori Mori at Kobe Universi-
ty for valuable discussion. This work was supported by a Grant-in-
Aid for Scientific Research on Priority Areas ‘Advanced Molecular
Transformations of Carbon Resources’ from the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.
(c) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam,
M. L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127.
(d) Novak, Z.; Szabo, A.; Repasi, J.; Kotschy, A. J. Org.
Chem. 2003, 68, 3327. (e) Faller, J. W.; Kultyshev, R. G.;
Parr, J. Tetrahedron Lett. 2003, 44, 451. (f) Méry, D.;
Heuzé, K.; Astruc, D. Chem. Commun. 2003, 1934.
(g) Hillerich, J.; Plenio, H. Chem. Commun. 2003, 3024.
(h) Soheili, A.; Albaneze-Walker, J.; Murry, J. A.; Dormer,
P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191. (i) Remmele,
H.; Köllhofer, A.; Plenio, H. Organometallics 2003, 22,
4098. (j) Köllhofer, A.; Plenio, H. Chem. Eur. J. 2003, 9,
1416. (k) Heuzé, K.; Méry, D.; Gauss, D.; Astruc, D. Chem.
Commun. 2003, 2274. (l) Hierso, J.-C.; Fihri, A.; Amardeil,
R.; Meunier, P.; Doucet, H.; Santelli, M.; Ivanov, V. Org.
Lett. 2004, 6, 3473. (m) Dubbaka, S. R.; Vogel, P. Adv.
Synth. Catal. 2004, 346, 1793. (n) Devashner, R. B.; Moore,
L. R.; Shaughnessy, K. H. J. Org. Chem. 2004, 69, 7919.
(o) Kim, J. T.; Gevorgyan, V. J. Org. Chem. 2004, 69, 5638.
(p) Heuzé, K.; Méry, D.; Gauss, D.; Blais, J.-C.; Astruc, D.
References and Notes
(1) (a) Nicolaou, K. C.; Sorensen, E. J. Classics in Total
Synthesis; Wiley-VCH: Weinheim, 1996, 582–586.
(b) Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D.
Application of Transition Metal Catalysts in Organic
Synthesis; Springer: Berlin, 1998, 179–225. (c) Tour, J.
Acc. Chem. Res. 2000, 33, 791.
(2) For examples of recent reviews, see: (a) Sonogashira, K.
J. Organomet. Chem. 2002, 653, 46. (b) Negishi, E.;
Anastasia, L. Chem. Rev. 2003, 103, 1979. (c) Nicolaou, K.
C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44,
4442. (d) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133.
(e) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
(3) (a) Ames, D. E.; Bull, D.; Takundwa, C. Synthesis 1981,
364. (b) Menchi, G.; Scrivanti, A.; Matteoli, U. J. Mol.
Chem. A: Chem. 2000, 152, 77.
Synlett 2008, No. 19, 3041–3045 © Thieme Stuttgart · New York