L. D. S. Yadav, C. Awasthi / Tetrahedron Letters 50 (2009) 715–718
717
Harshavardhan, S. J. Tetrahedron Lett. 2005, 46, 3569–3572; (f) Smietna, M.;
Gouverneur, V.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 193–195.
12. (a) Hajra, S.; Karmakar, A.; Bhowmick, M. Tetrahedron 2005, 61, 2279–2286; (b)
Hajra, S.; Bhowmick, M.; Karmakar, A. Tetrahedron Lett. 2005, 46, 3073–3077.
13. George, S.; Narina, S. V.; Sudalai, A. Tetrahedron Lett. 2007, 48, 1375–1378.
14. Roy, S. C.; Guin, C.; Rana, K. K.; Maiti, G. Synlett 2001, 226–227.
15. (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: San
Diego, 1997; (b) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271–1287.
16. (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123–1178; (b) Kitamura,
T.; Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409–458.
17. (a) Wirth, T. Angew. Chem., Int. Ed. 2001, 40, 2812–2814; (b) Ladziata, U.;
Zhdankin, V. V. Arkivoc 2006, ix, 26–58.
18. (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41,
993–996; (b) Nicolaou, K. C.; Barn, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.;
Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233–2244.
After a successful attempt at the synthesis of bromohydrins 2,
we applied the same procedure for the synthesis of bromoethers
4 from BH adducts 1 using MeOH or EtOH instead of H2O to afford
4 in 78–87% yields27 (Table 2).
A plausible mechanistic pathway for the regioselective forma-
tion of bromohydrins 2 and bromoethers 4 is depicted in Scheme
2. Possibly a three-membered cyclic bromonium ion intermediate
6 is formed by the electrophilic addition of Br2 (generated in situ
from LiBr/IBX) to the double bond of the olefin 5, which is then at-
tacked by H2O, MeOH, or EtOH to form the product 2 or 4. With all
the substrates studied, the reaction proceeded with complete reg-
ioselectivity in favour of the anti-Markownikov product, that is, the
hydroxy or alkoxy group is added to the b-position, exclusively
(Scheme 2). No traces of dibromides were observed in the case of
any of the substrates 1 used in the present study.
19. Yadav, J. S.; Reddy, S.; Singh, A. P.; Basak, A. K. Tetrahedron Lett. 2007, 48, 7546–
7548.
20. (a) Jang, H. S.; Chung, W. J.; Lee, Y. S. Tetrahedron Lett. 2007, 48, 3731–3734; (b)
Mülbaier, M.; Giannis, A. Angew. Chem., Int. Ed. 2001, 40, 4393–4394; (c) Lei, Z.;
Denecker, C.; Jegasothy, S.; Sherrington, D. C.; Slater, N. K. H.; Sutherland, A. J.
Tetrahedron Lett. 2003, 44, 1635–1637; (d) Chung, W. J.; Kim, D. K.; Lee, Y. S.
Tetrahedron Lett. 2003, 44, 9251–9254.
21. (a) Boeckman, R. K.; Shao, P.; Mullins, J. J. Org. Synth. Coll. 2004, 10, 696–702;
(b) Depernet, D.; François, B. U.S. Patent 0107416, 2002; Chem. Abstr. 2002, 137,
109123.
22. (a) Yadav, L. D. S.; Yadav, S.; Rai, V. K. Green Chem. 2006, 8, 455–458; (b) Yadav,
L. D. S.; Rai, V. K. Tetrahedron Lett. 2006, 47, 395–397; (c) Yadav, L. D. S.;
Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron Lett. 2007, 48, 4899–4902. and 8037–
8039; (d) Yadav, L. D. S.; Patel, R.; Rai, V. K.; Srivastava, V. P. Tetrahedron Lett.
2007, 48, 7793–7795; (e) Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C.
Tetrahedron Lett. 2008, 49, 687–690; (f) Yadav, L. D. S.; Awasthi, C.; Rai, A.
Tetrahedron Lett. 2008, 49, 6360–6363.
In summary, we have presented the first example of one-pot
oxidative bromohydroxylation and bromoalkoxylation of BH ad-
ducts to afford the corresponding
a-bromo-b-hydroxy and a-bro-
mo-b-alkoxy compounds by using LiBr as the bromine source
and IBX as the oxidant. The methodology avoids the use of heavy
metal halides or N-halosuccinimides as the halogen source, and
opens up a new aspect of the synthetic utility of BH adducts.
Acknowledgement
23. General procedure for the synthesis of bromohydrins 2: A mixture of BH adduct 1
(1 mmol) and IBX (2.4 mmol) in acetonitrile (10 mL) was stirred at rt for 2 h
followed by the addition of a solution of LiBr (2 mmol) in H2O (5 mL) and
stirring for a further 6–8 h at rt (Table 1). After completion of the reaction
(monitored by TLC), the mixture was diluted with water and extracted with
diethyl ether (3 Â 20 mL). The combined organic layers were washed with
sodium thiosulfate followed by brine, dried over anhydrous Na2SO4 and
evaporated under reduced pressure to give the crude product, which was
purified by silica gel column chromatography using hexane/ethyl acetate
(9.4:0.6) as eluent to afford an analytically pure sample of 2. Physical data of
representative compounds. Compound 2a: Yellowish solid, yield 86%, mp
We sincerely thank SAIF, Punjab University, Chandigarh, for
providing microanalyses and spectra.
References and notes
1. (a) Tenaglia, A.; Pardigon, O.; Buono, G. J. Org. Chem. 1996, 61, 1129–1132; (b)
Haruyoshi, M.; Kiyoshi, T.; Masahiro, N.; Akira, H.; Yutaka, N.; Yasutaka, I. J. Org.
Chem. 1994, 59, 5550–5555; (c) Rodriguez, J.; Dulcere, J.-P. Synthesis 1993,
1177–1205; (d) Block, E.; Schwan, A. L.. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: Oxford, 1991;
Vol. 4, pp 344–347.
2. (a) Christophersen, C. Acta Chem. Scand. 1985, 39B, 517–529; (b) Erickson, R. E..
In Marine Natural Products; Scheuer, P. J., Ed.; Academic: New York, 1986; Vol.
V, p 131; (c) Konopelski, J. P.; Boehler, M. A.; Tarasow, T. M. J. Org. Chem. 1989,
54, 4966–4970; (d) Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed.;
Electronic Release, 1998.; (e) Cabanal-Duvillard, I.; Berrier, J. F.; Royer, J.;
Husson, H. P. Tetrahedron Lett. 1998, 39, 5181–5184.
156 °C. IR (KBr)
mmax 3490, 3068, 2870, 2241, 1666, 1602, 1584, 1455, 760, 695,
534 cmÀ1
.
1H NMR (400 MHz; CDCl3/TMS): d 2.30 (br s, 1H, OH), 4.61 (d, 1H,
J = 12.2 Hz, b-Ha), 4.30 (d, 1H, J = 12.2 Hz, b-Hb), 7.34–7.95 (m, 5Harom). 13C
NMR (100 MHz; CDCl3/TMS): d 58.1, 63.3, 116.8, 127.0, 127.9, 133.5, 136.7,
198.3. EIMS (m/z): 253 (M+). Anal. Calcd for C10H8BrNO2: C, 47.43; H, 3.16; N,
5.53. Found: C, 47.07; H, 3.48; N, 5.19. Compound 2d: Yellowish solid, yield
81%, mp 193 °C. IR (KBr) mmax 3470, 2993, 1741, 1665, 1605, 1543, 1340, 855,
565 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 2.10 (br s, 1H, OH), 3.60 (s, 3H,
.
COOMe), 3.80 (s, 3H, OMe), 4.56 (d, 1H, J = 12.2 Hz, b-Ha), 4.25 (d, 1H,
J = 12.2 Hz, b-Hb), 7.11 (d, 2H, J = 7.9 Hz, Harom), 7.69 (d, 2H, J = 7.9 Hz, Harom).
13C NMR (100 MHz; CDCl3/TMS): d 50.2, 55.0, 65.4, 71.6, 112.1, 130.1, 131.2,
167.7, 173.0, 196.8. EIMS (m/z): 316 (M+). Anal. Calcd for C12H13BrO5: C, 45.57;
H, 4.11. Found: C, 45.23; H, 4.43.
3. (a) Ishihara, T.; Mima, K.; Konno, T.; Yamanaka, H. Tetrahedron Lett. 2002, 43,
3493–3497; (b) Guindon, Y.; Rancourt, J. J. Org. Chem. 1998, 63, 6554–6565; (c)
Nagano, H.; Kuno, Y.; Omori, Y.; Iguchi, M. J. Chem. Soc., Perkin Trans. 1 1996,
389–394; (d) Hart, D. J.; Krishnamurthy, R. J. Org. Chem. 1992, 57, 4457–4470.
4. (a) Smith, M. B.; March, J. Advanced Organic Chemistry, 5th ed.; Wiley-
Interscience: New York, 2001. p 478; (b) Dolenc, D.; Harej, M. J. Org. Chem.
2002, 67, 312–313; (c) Boukhris, S.; Souizi, A. Tetrahedron Lett. 2003, 44, 3259–
3261; (d) Boukhris, S.; Souizi, A.; Robert, A. Tetrahedron Lett. 1998, 39, 6281–
6282; (e) Cho, S.; Kang, S.; Keum, G.; Kang, S. B.; Han, S. Y.; Kim, Y. J. Org. Chem.
2003, 68, 180–182.
5. (a) Adhikari, S.; Roy, S. Tetrahedron Lett. 1992, 33, 6025–6026; (b) Maiti, G.;
Adhikari, S.; Roy, S. C. J. Chem. Soc., Perkin Trans. 1 1995, 927–929; (c) Maiti, G.;
Adhikari, S.; Roy, S. C. Tetrahedron 1995, 51, 8389–8396.
6. Dulcere, J. P.; Mihousi, M. N.; Rodriguez, J. J. Org. Chem. 1993, 58, 5709–5716.
7. (a) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511–4574; (b) Basavaiah, D.; Rao,
A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (c) Langer, P. Angew.
Chem., Int. Ed. 2000, 39, 3049–3052; (d) Basavaiah, D.; Rao, P. D. Tetrahedron
1996, 52, 8001–8062.
8. Basavaiah, D.; Rao, V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581–1588.
9. (a) Majetich, G.; Hicks, R.; Reister, S. J. Org. Chem. 1997, 62, 4321–4326; (b)
Bonini, C.; Righi, G. Synthesis 1994, 225–238; (c) Smith, J. G.; Fieser, M.. In Fieser
and Fieser’s Reagent for Organic Synthesis; John Wiley and Sons: New York,
1990; Vols. 1–12; (d) Reddy, M. A.; Surendra, K.; Bhanumathi, N.; Rama Rao, K.
Tetrahedron 2002, 58, 6003–6008; (e) Sharghi, H.; Niknam, K.; Pooyan, M.
Tetrahedron 2001, 57, 6057–6064; (f) Ranu, B. C.; Banerjee, S. J. Org. Chem. 2005,
70, 4517–4519; (g) Shimizu, M.; Yoshida, A.; Fujisawa, T. Synlett 1992, 204–
206; (h) Ciaccio, J. A.; Heller, E.; Talbot, A. Synlett 1991, 248–250.
24. Rudrawar, S. Synlett 2005, 1197–1198.
25. General procedure for the synthesis of epoxides 3: Bromohydrin 2 (1 mmol) was
stirred in a 10% aq NaOH solution (5 mL) for 5–10 min (Table 1). Then, water
(5 mL) was added to the reaction mixture and it was extracted with EtOAc
(3 Â 10 mL). The combined organic layers were washed with brine and then
dried over anhydrous Na2SO4. The extract was filtered and the filtrate was
evaporated under reduced pressure to leave a residue, which was purified by
silica gel column chromatography (hexane/EtOAc 9.3:0.7) to afford the pure
product 3. Compound 3a: White solid, yield 89%, mp 110–111 °C. IR (KBr) mmax
3054, 2235, 1695, 1260, 870, 765, 698, cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d
.
2.91 (d, 1H, J = 6.0 Hz, b-Ha), 3.20 (d, 1H, J = 6.0 Hz, b-Hb), 7.34–7.95 (m,
5Harom). 13C NMR (100 MHz; CDCl3/TMS): d 40.7, 63.4, 117.1, 127.8, 128.8,
131.2, 136.7, 198.2. EIMS (m/z): 173 (M+). Anal. Calcd for C10H7NO2: C, 69.34;
H, 4.04; N, 8.09. Found: C, 69.69; H, 4.40; N, 7.76. Compound 3d: White solid,
yield 84%, mp 147–149 °C. IR (KBr) mmax 2995, 2854, 1746, 1693, 1605, 1543,
1340, 1265, 875, 853 cmÀ1 1H NMR (400 MHz; CDCl3/TMS): d 2.81 (d, 1H,
.
J = 6.0 Hz, b-Ha), 3.20 (d, 1H, J = 6.0 Hz, b-Hb) 3.53 (s, 3H, COOMe), 3.64 (s, 3H,
OMe), 7.11 (d, 2H, J = 7.9 Hz, Harom), 7.69 (d, 2H, J = 7.9 Hz, Harom). 13C NMR
(100 MHz; CDCl3/TMS): d 40.7, 55.8, 61.5, 76.8, 113.6, 128.0, 128.9, 130.3,
173.6, 196.8. EIMS (m/z): 236 (M+). Anal. Calcd for C12H12O5: C, 60.99; H, 5.08.
Found: C, 61.34; H, 5.36.
26. Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723–4725.
27. General procedure for the synthesis of bromoethers 4: The procedure followed
was the same as described above for the synthesis of 221 except that MeOH or
EtOH (5 mL) was used instead of H2O (5 mL). The crude product was purified
by column chromatography on silica gel with hexane/EtOAc (9.5:0.5) as eluent
to afford the pure product 4. Compound 4a: Yellowish solid, yield 84%, mp
10. Nandanan, E.; Phukan, P.; Sudalai, A. Ind. J. Chem. 1999, 38B, 283–286.
11. (a) Comprehensive Organic Transformation:
A Guide to Functional Group
Preparation; Larock, R. C., Ed., 2nd ed.; Wiley-VCH: New York, 1999; pp 629–
640; (b) Das, B.; Venkateswarlu, K.; Damodar, K.; Suneel, K. J. Mol. Catal. A:
Chem. 2007, 269, 17–21; (c) Barluenga, J.; Marco-Arias, M.; Gonzalez-Bobes, F.;
Ballesteros, A.; Gonzalez, J. M. Chem. Eur. J. 2004, 10, 1677–1682; (d) Masuda,
H.; Takase, K.; Nishio, M.; Hasegawa, A.; Nishiyam, Y.; Ishii, Y. J. Org. Chem.
1994, 59, 5050–5055; (e) Yadav, J. S.; Reddy, B. V. S.; Baishya, G.;
125 °C. IR (KBr) mmax 3052, 2996, 2856, 2239, 1697, 760, 697, 557 cmÀ1 1H
.
NMR (400 MHz; CDCl3/TMS): d 3.31 (s, 3H, OMe), 4.25 (d, 1H, J = 12.2 Hz, b-Ha),
4.56 (d, 1H, J = 12.2 Hz, b-Hb), 7.34–7.95 (m, 5Harom). 13C NMR (100 MHz;