S.-W. Yang et al. / Bioorg. Med. Chem. Lett. 21 (2011) 182–185
185
Table 5
could be substituted with a methyl group or replaced with a
(un)substituted piperidine ring. Changing the substitution group
or pattern of 4-phenyl group of 1 was tolerated. However, some
disubstituted 4-phenyl analogs (42–45) displayed diminished
selectivity over hCB1. Moving the saturated-heterocyclic methyl
moiety from the meta to the ortho position led to reduced hCB2
agonist activity, and was not desired. During efforts to improve
the pharmacokinetics of 1, our screening results indicated that
the methyl substitution at the 2-position of the morpholine ring
could enhance compound exposure to twofold in rats, compared
to that of 1. Several analogs from this 2,4-diphenyl-1H-imidazole
series exhibited efficacy in neuropathic pain models in rodents.
These results will be published in due course.
SAR of ortho-substituted phenyl analogs
H
N
N
R2
CF3
R2
hCB2, EC50 (nM) (Emax
)
hCB1, EC50 (nM)
>10,000
46
47
130 (108%)
N
N
F
O
510 (102%)
>10,000
Acknowledgments
The authors wish to acknowledge Drs. Ying Huang and Andrew
Stamford for providing information of hits from the high-through-
put screening, Dr. Jesse Wong and his group for preparation of key
intermediates, Dr. Tze-Ming Chan and his group for structure con-
firmation of some analogs, and the DMPK group for acquiring phar-
macokinetic data.
Table 6
Rat pharmacokinetic data (AUC) of selected compounds
AUC, (nM h), rat 0–6 h
1
8
866
158
42
20
21
23
24
25
26
27
28
29
1989
537
881
1411
524
1111
682
851
References and notes
1. Gaoni, Y.; Mechoulam, R. J. Am. Chem. Soc. 1964, 86, 1646.
2. (a) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.; Bonner, T. I.
Nature 1990, 346, 561; (b) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993,
365, 61.
3. Herkenham, M.; Lynn, A. B.; Little, M. D.; Johnson, M. R.; Melvin, L. S.; de Costa,
B. R.; Rice, K. C. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1932.
4. For review, see: (a) Cheng, Y.; Hitchcock, S. A. Expert Opin. Invest. Drugs 2007,
16, 951; (b) Jhaveri, M. D.; Sagar, D. R.; Elmes, S. J. R.; Kendall, D. A.; Chapman,
V. Mol. Neurobiol. 2007, 36, 26.
5. Hanus, L.; Breuer, A.; Tchilibon, S.; Shiloah, S.; Goldenberg, D.; Horowitz, M.;
Pertwee, R. G.; Ross, R. A.; Mechoulam, R.; Fride, E. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 14228.
model with 10 mg/kg oral administration. Their AUC data are listed
in Table 6. Replacing the 3-CF3 group with a bromine atom (8) or
replacing the oxygen atom with a sulfur atom (20) led to reduced
plasma exposure (AUC 158 and 42 nM h, respectively). Implement-
ing a methyl group next to the morpholine oxygen atom (21) re-
sulted in a twofold enhancement of the plasma exposure (AUC:
1989 nM h), compared to that of 1. This may be due to the blockage
of the metabolic potential site of the morpholine ring. The piperid-
inyl analog (23) displayed slightly reduced AUC (537 nM h) in com-
parison to that of 1. However, compounds (24 and 25) with methyl
substitution at the 4- or 3-position of the piperidine ring improved
the exposure in rats (AUC: 881 and 1411 nM h, respectively), rela-
tive to that of 23. Four fluoro-substituted piperidinyl analogs (26–
29) were evaluated for their pharmacokinetic properties. Their
AUC values were comparable or slightly better than that of 1. In
general, methyl substitution at the 2-position of the morpholine
ring or 3- or 4-position of the piperidine ring could increase the
compound exposure in rats, compared to those of the unsubstitut-
ed analogs (1 and 23).
6. (a) Malan, T. P. J.; Ibrahim, M. M.; Deng, H.; Liu, Q.; Mata, H. P.; Vanderah, T.;
Porreca, F.; Makriyannis, A. Pain 2001, 93, 239; (b) Ibrahim, M. M.; Deng, H.;
Zvonok, A.; Cockayne, D. A.; Kwan, J.; Mata, H. P.; Vanderah, T. W.; Lai, J.;
Porreca, F.; Makriyannis, A.; Malan, T. P. J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
10529; (c) Beltramo, M.; Bernardini, N.; Bertorelli, R.; Campanella, M.;
Nicolussi, E.; Fredduzzi, S.; Reggiani, A. Eur. J. Neurosci. 2006, 23, 1530; (d)
Mancini, I.; Brusa, R.; Quadrato, G.; Foglia, C.; Scandroglio, P.; Silverman, L. S.;
Tulshian, D.; Reggiani, A.; Beltramo, M. Br. J. Pharmacol. 2009, 158, 382.
7. (a) Valenzano, K. J.; Tafesse, L.; Lee, G.; Harrison, J. E.; Boulet, J. M.; Gottshall, S.
L.; Mark, L.; Pearson, M. S.; Miller, W.; Shan, S.; Rabadi, L.; Rotshteyn, Y.;
Chaffer, S. M.; Turchin, P. I.; Elsemore, D. A.; Toth, M.; Koetzner, L.; Whiteside,
G. T. Neuropharmacology 2005, 48, 658; (b) Whiteside, G. T.; Gottshall, S. L.;
Boulet, J. M.; Chaffer, S. M.; Harrison, J. E.; Pearson, M. S.; Turchin, P. I.; Mark, L.;
Garrison, A. E.; Valenzano, K. J. Eur. J. Pharmacol. 2005, 528, 65.
8. Giblin, G. M. P.; O’Shaughnessy, C. T.; Naylor, A.; Mitchell, W. L.; Eatherton, A. J.;
Slingsby, B. P.; Rawlings, D. A.; Goldsmith, P.; Brown, A. J.; Haslam, C. P.;
Clayton, N. M.; Wilson, A. W.; Chessell, I. P.; Wittington, A. R.; Green, R. J. Med.
Chem. 2007, 50, 2597.
9. Elmes, S. J.; Jhaveri, M. D.; Smart, D.; Kendall, D. A.; Chapman, V. Eur. J. Neurosci.
2004, 20, 2311.
10. Brederech, H.; Effenberger, F.; Marquez, F.; Ockewitz, K. Chem. Ber. 1960, 93,
2083.
In conclusion, a novel series of potent and selective CB2 recep-
tor agonists based on the 2,4-diphenyl-1H-imidazole scaffold were
discovered. The preliminary SAR studies are summarized as fol-
lows. The N-1 substitution was not desirable. The morpholine ring
11. Analytical data for compound 1: 1H NMR (CDCl3): d 2.50 (m, 4H), 3.58 (s, 2H),
3.74 (t, J = 4.6 Hz, 4H), 7.36 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.46 (br s,
1H), 7.51 (m, 2H), 7.82 (d, J = 7.7 Hz, 1H), 7.92 (s, 1H), 8.03 (m, 1H), 8.11 (m,
1H), 9.70 (br s, NH). ESI-MS: m/z 388 [M+H]+, C21H20F3N3O.