Moorthy et al.
JOCArticle
is due to their promising applications in gas adsorption,6,8
separation and purification,9 catalysis and asymmetric
synthesis,10 optical resolution,11,12 etc. In a broad sense,
the organic compounds that accommodate guest molecules
can be classified into two categories, “unimolecular”’ and
“multimolecular” inclusion compounds.13 Molecules such as
cyclodextrins, calixarenes, cucurbiturils, crown ethers, cryp-
tands, spherands, etc. with inherent potential to bind guest
molecules constitute excellent examples of unimolecular
inclusion host compounds.14 The multimolecular inclusion
compounds, also termed lattice inclusion host compounds,
differ in the sense that two or more host molecules are
involved in the construction of cavities for guest inclusion;
urea, choleic acids, Dianin’s compound, hydroquinone,
gossypol, etc. are well-known examples of this category.13,15
The chemistry of unimolecular host systems is fairly ad-
vanced.16 However, creation of multimolecular inclusion
compounds with cavities for guest inclusion is challenging
and continues to elicit tremendous interest.8,17
In our recent investigations focused on the development of
functional organic materials,18 we surmised that flat pyrenes
decked up at the four corners with highly rigid aromatic
panels as shown in Scheme 1 should exhibit packing diffi-
culty in the solid state, so that such molecular systems may a
priori be anticipated to crystallize with guest inclusion.19
Indeed, metalated tetraarylporphyrins in which the aryl rings
at meso positions orient orthogonally are well-known to
form inclusion compounds with a variety of guest mole-
cules.20 We reasoned that tetraarylpyrenes should be mark-
edly different from metalated tetraarylporphyrins from
several points of view: (i) whereas tetraarylporphyrins are
of D4h symmetry, tetraarylpyrenes are of reduced D2h sym-
metry, which increases the number of possible packing
modes in the crystal lattice; (ii) tetraarylpyrenes offer three
readily conceivable domains for guest inclusion, namely,
trough, concave, and basin, cf. Scheme 1, to permit inclusion
of two or more guest molecules simultaneously; (iii) the
excellent fluorescence property of tetraarylpyrenes may
permit guest inclusion in the solid state to be signaled via
fluorescence; and (iv) tetraarylpyrenes can be readily
adapted as spacers with unique topology for porous metal-
organic frameworks (MOFs). Thus, we have explored the
guest inclusion behavior of tetraarylpyrenes H1-H4. Here-
in, we report the results of our comprehensive investigations
on the guest inclusion behavior of H1-H4 with a variety of
guest molecules. In particular, the methoxy hosts H2 and H4
are shown to (i) include a number of diverse guest molecules
in all three distinct domains, viz., trough, channel, and basin,
and (ii) exhibit remarkable discrimination in the binding of
(5) (a) Ermer, O. J. Am. Chem. Soc. 1988, 110, 3747. (b) Reddy, D. S.;
Craig, D. C.; Desiraju, G. R. J. Am. Chem. Soc. 1996, 118, 4090.
(c) Lawrence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 1995, 95, 2229.
(d) Brunet, P.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1997, 119,
2737. (e) MacGillivray, L. R.; Atwood, J. L. Angew. Chem., Int. Ed. 1999, 38,
1018. (f) Kobayashi, K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa, N.
Angew, Chem., Int. Ed. 1999, 38, 3843. (g) Reddy, D. S.; Dewa, T.; Endo, K.;
Aoyama, Y. Angew. Chem., Int. Ed. 2000, 39, 4266. (h) Zaworotko, M. J.
Angew, Chem., Int. Ed. 2000, 39, 3052. (i) Yue, W.; Bishop, R.; Craig, D. C.;
Scudder, M. L. Tetrahedron 2000, 56, 6667. (j) Muller, T.; Hulliger, J.;
Seichter, W.; Weber, E.; Weber, T.; Wubbenhorst, M. A. Chem.;Eur. J.
2000, 6, 54. (k) Holman, K. T.; Pivovar, A. M.; Swift, J. A.; Ward, M. D. Acc.
Chem. Res. 2001, 34, 107. (l) Moulton, B.; Zaworotko, M. J. Chem. Rev.
2001, 101, 1629. (m) Kobayashi, K.; Sato, A.; Sakamoto, S.; Yamaguchi, K.
J. Am. Chem. Soc. 2003, 125, 3035. (n) Fournier, J. H.; Maris, T.; Wuest, J. D.
J. Org. Chem. 2004, 69, 1762. (o) Laliberte, D.; Maris, T.; Wuest, J. D. J. Org.
Chem. 2004, 69, 1776. (p) Moorthy, J. N.; Natarajan, R.; Venugopalan, P.
J. Org. Chem. 2005, 70, 8568. (q) Helzy, F.; Maris, T.; Wuest, J. D. Cryst.
Growth Des. 2008, 8, 1547.
(6) (a) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.;
Keeffe, M. O.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (b) Kitagawa, S.;
Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. 2004, 43, 2334. (c) Fujita, M.;
Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369.
(d) Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Arndt, K. S.; Pastre,
J. J. Mater. Chem. 2006, 16, 626. (e) Collins, D. J.; Zhou, H. C. J. Mater.
Chem. 2007, 17, 3154. (f) Van den berg, A. W. C.; Arean, C. O. Chem.
Commun. 2008, 668.
(7) (a) Wang, X.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116,
12119. (b) Endo, K.; Sawaki, T.; Sawaki, T.; Koyanagi, M.; Kobayashi, K.;
Masuda, H.; Aoyama, Y. J. Am. Chem. Soc. 1995, 117, 8341. (c) Ung, A. T.;
Gizachew, D.; Bishop, R.; Scudder, M. L.; Dance, I. G.; Craig, D. C. J. Am.
Chem. Soc. 1995, 117, 8745. (d) Janiak, C. Angew. Chem., Int. Ed. 1997, 36,
1431. (e) Sawaki, T.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 4793.
(f) Goldberg, I. Chem.;Eur. J. 2000, 112, 3863. (g) Malek, N.; Maris, T.;
Perron, M.-E.; Wuest, J. D. Angew. Chem., Int. Ed. 2005, 44, 4021.
(8) Sozzani, P.; Bracco, S.; Comotti, A.; Ferretti, L.; Simonutti, R.
Angew. Chem., Int. Ed. 2005, 44, 1816.
(15) (a) Gdaniec, M.; Ibragimov, B. T.; Talipov, S. A. Gossypol. In Compre-
hensive Supramolecular Chemistry; Macnicol, D. D., Toda, F., Bishop, R., Eds.;
Elsevier Sciences: London, 1996; Vol. 6, p 117. (b) Gossypol: Ibragimov, B. T.;
Talipov, S. A. Encyclopedia of Supramolecular Chemistry; Marcel Decker: New
York, 2004; p 606. (c) Miyata, M.; Tohnai, N.; Hisaki, I. Molecules 2007, 12,
1973.
(16) (a) Encyclopedia of Supramolecular Chemistry; Atwood, J. L., Steed,
J. W., Eds.; Marcel Decker: New York, 2004; Vols. I and II. (b) Goldberg, I. In
Inclusion compounds; Atwood, J. L., Davies, J. E. D., Macnicol, D. D., Eds.:
Oxford University Press: Oxford, 1991; Vol. 4; p 406.
(9) Separation and Reactions in Organic Supramolecular Chemistry; Toda,
F., Bishop, R., Eds.; Wiley: New York, 2004.
(10) (a) Macnicol, D. D., Toda, F., Bishop, R., Eds. Comprehensive Supra-
molecular Chemistry, Solid State Chemistry: Crystal Engineering; Pergamon
Press: Oxford, 1996. (b) Desiraju, G. R. Curr. Opin. Solid. State. Mater. Sci.
1997, 2, 451. (c) Heath, J. R., Ed. Acc. Chem. Res. 1999, 32, 388 (special issue on
Nanoscale Materials). (d) Perspectives in Supramolecular Chemistry; Supra-
molecular Materials and Technologies; Reinhoudt, D. N., Ed.; Wiley: Chiche-
ster, 1999. (e) Miyata, M.Inclusion Reactions and Polymerization.Encyclopedia
of Supramolecular Chemistry; Marcel Decker: New York, 2004; p 705.
(f) Ramamurthy, V. Photochemistry in Constrained and Organized Media;
VCH Publishers: New York, 1991. (g) Rebek, J., Jr. Acc. Chem. Res. 1999, 32,
278.
(11) Toda, F. Pure Appl. Chem. 2001, 73, 1137 and references therein.
(12) (a) Langly, P. J.; Hulliger, J. Chem. Soc. Rev. 1999, 28, 279.
(b) Hertzsch, T.; Budde, F.; Weber, E.; Hulliger, J. Angew. Chem., Int. Ed.
2002, 41, 2282.
(13) (a) Molecular Inclusion and Molecular Recognition-Clathrates I and II.
In Topics in Current Chemistry; Weber, E., Ed.; Springer-Verlag: Berlin-
Heidelberg; 1987 and 1988; Vols. 140 and 149. (b) Bishop, R. Chem. Soc. Rev.
1996, 311.
(17) (a) MacGillivray, L.; Atwood, J. L. J. Am. Chem. Soc. 1997, 119,
6931. (b) Nangia, A. Cryst. Growth Des. 2008, 8, 1079. (c) Bhogala, B. R.;
Nangia, A. New J. Chem. 2008, 32, 800. (d) Hisaki, I.; Shizuki, N.; Aburaya,
K.; Katsuta, M.; Tohnai, N.; Miyata, M. Cryst. Growth Des. 2009, 9, 1280.
(e) Jacob, T.; Lloyd, G. O.; Bredenkamp, W.; Barbour, L. J. Cryst. Growth
Des. 2009, 9, 1284.
(18) (a) Natarajan, R.; Savitha, G.; Dominiak, P.; Wozniak, K.;
Moorthy, J. N. Angew. Chem., Int. Ed. 2005, 44, 2115. (b) Natarajan, R.;
Savitha, G.; Moorthy, J. N. Cryst. Growth Des. 2005, 5, 69. (c) Moorthy,
J. N.; Natarajan, P.; Venkatakrishnan, P.; Huang, D.-F.; Chow, T. J. Org.
Lett. 2007, 9, 5215. (d) Moorthy, J. N.; Venkatakrishnan, P.; Huang, D.-F.;
Chow, T. J. Chem. Commun. 2008, 2146. (e) Moorthy, J. N.; Venkatakrishnan,
P.; Natarajan, P.; Huang, D.-F.; Chow, T. J. J. Am. Chem. Soc. 2008, 130,
17320.
(19) Our extensive search of the Crystal Structure Database (ConQuest
Ver-1.11, CCDC-2009) revealed only 6 structures of tetraalkyl/arylpyrenes
(ref codes: GANQES, MEBZID, MEBZOJ, WENJUV, COBDAZ,
HIZBUO). Only in one case, i.e., 1,3,6,8-tetrakis(4-methoxyphenyl)pyrene
(GANQES), was inclusion of THF observed. Notably, no systematic in-
vestigations as to the phenomenon of guest inclusion by pyrenes have
heretofore been reported to the best of our knowledge.
(20) (a) Byrn, M. P.; Curtis, C. J.; Hsiou, Y.; Khan, S. I.; Sawin, P. A.;
Tendick, S. K.; Terzis, A.; Strouse, C. E. J. Am. Chem. Soc. 1993, 115, 9480.
(b) Goldberg, I. Porphyrin-Based Clathrates. Encyclopedia of Supramolecular
Chemistry; Marcel Decker: New York, 2004; p 1150.
(14) (a) Inclusion Compounds; Atwood, J. L., Davies, J. E. D., Macnicol,
D. D., Eds.; Academic Press Inc.: London, 1984. (b) Inclusion Compounds;
Atwood, J. L., Davies, J. E. D., Macnicol, D. D., Eds.; Oxford University Press:
Oxford, 1991. (c) Comprehensive Supramolecular Chemistry; Atwood, J. L.,
Davies, J. E. D., MacNicol, D. D., Vogtle, F., Lehn, J.-M., Eds.; Pergamon:
Oxford, 1996.
J. Org. Chem. Vol. 74, No. 22, 2009 8567