Synthesis of Aziridines and ꢀ-Chloroamines
and methods based on the use of epoxides,10 ꢀ-amino alcohols,11
or imines12 as starting materials. This last class of compounds
has been most widely employed as starting materials to obtain
aziridines, and several protocols have been developed to
transform imines into aziridines through methylene transfer by
using sulfur ylides13 or a mixture of dihalomethanes and
diethylzinc13f or potassium.14 Generally, the reported methods
to obtain aziridines required long reaction times and took place
in low yields.
ꢀ-Chloroamines have also been extensively used as starting
compounds to prepare aziridines. As well as being precursors
to aziridines, ꢀ-chloroamines are important building blocks in
organic synthesis, which could complement those synthetic
applications of aziridines. Generally, ꢀ-chloroamines have been
prepared by nucleophilic addition of various nucleophiles
(hydride, cyanide, Grignard reagents, etc.) to R-chloroimines.15
An improvement of these reported syntheses could be the
addition reaction of chloromethyllithium to imines, since the
starting imines are simpler compounds and are more readily
available than 2-chloroimines.
the successful aziridination. In addition, both the removal of
the N-substituent and the ring opening of this aziridine with
various nucleophiles could not be performed.16 As expected,
preparation of enantiopure aziridines by reaction of chiral
aldimines with halomethyllithium has not been reported to date,
despite enantiopure compounds having greater value than the
corresponding racemic compounds.
The use of halomethyllithium compounds in synthesis
presents a drawback given their instability: These reagents
spontaneously decompose through an R-elimination process
even at -100 °C. In order to use these organometallic
compounds as anionic reagents, halomethyllithium compounds
must be generated in situ, in the presence of the corresponding
electrophile to avoid decomposition prior to the reaction with
the electrophile.17 Generally, chloro-, bromo-, or iodomethyl-
lithium are prepared in situ by treating a mixture of chloroiodo-,
dibromo-, or diiodomethane and the corresponding electrophile
with methyllithium at low temperature (-78 °C).18 Indeed, the
reaction of in situ generated halomethyllithium with aldehydes
or ketones,19 esters,20 carboxylic acid chlorides,21 boronic
esters,22 or N-protected 3-oxazolidin-5-ones23 has been reported.
However, the in situ generated halomethyllithium compounds
did not react with less electrophilic reagents, such as imines,
and suffer an R-elimination reaction. The lack of reactivity of
imines could explain the absence of precedents concerning the
reaction of halomethyllithium compounds with imines. Given
this background, the development of a novel and efficient
method to obtain aziridines or chloroamines, including the
In this context, and to the best of our knowledge, only one
example of an aziridine ring has been prepared through the
reaction of in situ generated chloromethyllithium and a specific
imine derived from 2-pyridinecarboxaldehyde. However, when
the method was applied to other imines without the 2-pyridi-
neimine moiety, such as those derived from benzaldehyde, no
reaction took place. Thus, the authors assumed that the presence
of the 2-pyridineimine moiety was a necessary requirement for
(9) (a) Atkinson, R. S.; Coogan, M. P.; Lochrie, I. S. T. Chem Commun.
1996, 789–790. (b) Roth, P.; Somfai, P.; Andersson, P. G. Chem. Commun. 2002,
1752–1753. (c) Sjo¨holm-Timen, A.; Somfai, P. J. Org. Chem. 2003, 68, 9958–
9963. (d) Risberg, E.; Fischer, A.; Somfai, P. Chem. Commun. 2004, 2088–
2089. (e) Risberg, E.; Fischer, A.; Somfai, P. Tetrahedron 2005, 61, 8443–
8450.
(10) (a) Bilke, J. L.; Dzuganova, M.; Fro¨hlich, R.; Wu¨rthwein, E.-U. Org.
Lett. 2005, 7, 3267–3270. (b) Bouyacoub, A.; Volatron, F. Eur. J. Org. Chem.
2002, 4143–4150. (c) Hudlicky, T.; Rinner, U.; Gonza´lez, D.; Akgun, H.;
Schilling, S.; Siengalewicz, P.; Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002,
67, 8726–8743. (d) Ibuka, T. Chem. Soc. ReV. 1998, 27, 145–154.
(11) To see recent reviews on the synthesis of aziridine: (a) Osborn, H. M. I.;
Sweeney, J. B. Tetrahedron: Asymmetry 1997, 8, 1693–1715. (b) Hou, X. L.;
Wu, J.; Fan, R. H.; Ding, D. H.; Luo, Z. B.; Dai, L. X. Synlett 2006, 181–193.
(c) Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194–206.
(d) Schaumann, E.; Kirschning, A. Synlett 2007, 177–190.
(12) (a) Hodgson, D. M.; Kloesges, J.; Evans, B. Org. Lett. 2008, 10, 2781–
2783. (b) Denolf, B.; Leemans, E.; De Kimpe, N. J. Org. Chem. 2007, 72, 3211–
3217. (c) Sweeney, J. B.; Cantrill, A. A.; Drew, M. G. B.; McLaren, A. B.;
Thobhani, S. Tetrahedron 2006, 62, 3694–3703. (d) Sweeney, J. B.; Cantrill,
A. A.; McLaren, A. B.; Thobhani, S. Tetrahedron 2006, 62, 3681–3693. (e)
Concello´n, J. M.; Bernad, P. L.; Riego, E.; Garc´ıa-Granda, S.; Force´n-Acebal,
A. J. Org. Chem. 2001, 66, 2764–2768. (f) Kim, D. Y.; Suh, K. H.; Choi, J. S.;
Mang, J. Y.; Chang, S. K. Synth. Commun. 2000, 30, 87–95. (g) Cantrill, A. A.;
Hall, L. D.; Jarvis, A. N.; Osborn, H. M. I.; Raphy, J.; Sweeney, J. B. Chem.
Commun. 1996, 2631–2632. (h) Davis, F. A.; Zhou, P.; Liang, C.-H.; Reddy,
R. E. Tetrahedron: Asymmetry 1995, 6, 1511–1514.
(13) (a) Garc´ıa-Ruano, J. L.; Ferna´ndez, I.; del Prado-Catalina, M.; Alcudia-
Cruz, A. Tetrahedron: Asymmetry 1996, 7, 3407–3414. (b) Higashiyma, K.;
Matsumura, M.; Shiogama, A.; Yamauchi, T.; Ohmiya, S. Heterocycles 2002,
58, 85–88. (c) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 1353–
1354. (d) Morton, D.; Pearson, D.; Field, R. A.; Stockman, R. A. Synlett 2003,
1985–1988. (e) Midura, W. H. Tetrahedron Lett. 2007, 48, 3907–3910. (f)
Aggarwal, V. K.; Stenson, R. A.; Jones, R. V. H.; Fieldhouse, R.; Blacker, J.
Tetrahedron Lett. 2001, 42, 1587–1589. (g) Morton, D.; Pearson, D.; Field, R. A.;
Stockman, R. A. Chem. Commun. 2006, 1833–1835.
(16) Savoia, D.; Alvaro, G.; Di Fabio, R.; Gualandi, A.; Fiorelli, C. J. Org.
Chem. 2006, 71, 9373–9381.
(17) For reviews on the synthesis and synthetic applications of functionalized
halomethyllithium compounds: (a) Na´jera, C.; Yus, M. Trends Org. Chem. 1991,
2, 155–181. (b) Na´jera, C.; Yus, M. Recent Res. DeV. Org. Chem. 1997, 1, 67–
96. (c) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem., Int.
Ed. 2000, 39, 4414–4435. (d) Yus, M.; Foubelo, F. Targets Heterocycl. Syst.
2002, 6, 136–171. (e) Na´jera, C.; Yus, M. Curr. Org. Chem. 2003, 7, 867–926.
(f) Chinchilla, R.; Na´jera, C.; Yus, M. Tetrahedron 2005, 61, 3139–3176.
(18) A synthesis of epoxides has been reported by reaction of iodomethyl-
lithium with aldehydes and ketones at 0 °C: Concello´n, J. M.; Cuervo, H.;
Ferna´ndez-Fano, R. Tetrahedron 2001, 57, 8983–8987.
(19) (a) Barluenga, J.; Ferna´ndez-Simo´n, J. L.; Concello´n, J. M.; Yus, M.
J. Chem. Soc., Chem. Commun. 1986, 1665–1665. (b) Barluenga, J.; Ferna´ndez-
Simo´n, J. L.; Concello´n, J. M.; Yus, M. J. Chem. Soc., Chem. Commun. 1987,
915–916. (c) Barluenga, J.; Ferna´ndez-Simo´n, J. L.; Concello´n, J. M.; Yus, M.
J. Chem. Soc., Perkin Trans.1 1988, 3339–3343. (d) Barluenga, J.; Llavona, L.;
Bernad, P.; Concello´n, J. M. Tetrahedron Lett. 1993, 34, 3173–3176. (e)
Concello´n, J. M.; Llavona, L.; Bernad, P. L., Jr. Tetrahedron 1995, 51, 5573–
5584. (f) Barluenga, J.; Baragan˜a, B.; Concello´n, J. M. J. Org. Chem. 1995, 60,
6696–6699. (g) Barluenga, J.; Baragan˜a, B.; Concello´n, J. M. J. Chem. Soc.,
Chem. Commun. 1999, 64, 2843–2846. (h) Einhorn, C.; Allavena, C.; Luche,
J. L. J. Chem. Soc., Chem. Commun. 1999, 333–334. (i) Barluenga, J.; Baragan˜a,
B.; Concello´n, J. M.; Pin˜era-Nicola´s, A.; D´ıaz, M. R.; Garc´ıa-Granda, S. J. Org.
Chem. 1999, 64, 5048–5052. (j) Concello´n, J. M.; Baragan˜a, B.; Riego, E.
Tetrahedron Lett. 2000, 41, 4361–4362.
(20) (a) Barluenga, J. Llavona, L. Concello´n, J. M. Yus, M. J. Chem. Soc.,
Perkin Trans. 1990, 1, 417. (b) Barluenga, J. Llavona, L. Concello´n, J. M. Yus,
M. J. Chem. Soc., Perkin Trans. 1991, 1, 297–300. (c) Barluenga, J. Pedregal,
B. Concello´n, J. M. Tetrahedron Lett. 1993, 34, 4563–4564. (d) Barluenga, J.
Baragan˜a, B. Alonso, A. Concello´n, J. M. J. Chem. Soc., Chem. Commun. 1994,
969–970(e) Reference 19f.
(21) (a) Barluenga, J.; Ferna´ndez-Simo´n, J. L.; Concello´n, J. M.; Yus, M.
Synthesis 1987, 584–586. (b) Barluenga, J.; Concello´n, J. M.; Ferna´ndez-Simo´n,
J. L.; Yus, M. J. Chem. Soc., Chem. Commun. 1988, 536–537. (c) Barluenga,
J.; Concello´n, J. M.; Ferna´ndez-Simo´n, J. L.; Yus, M. J. Chem. Soc., Perkin
Trans. 1 1989, 77–80.
(14) tom Dieck, H.; Haupt, E. Chem. Ber. 1983, 116, 1540–1546.
(15) (a) Singh, G. S. D’hooghe, M. De Kimpe, N. Chem. ReV. 2007, 107,
2080–2135. (b) De Kimpe, N. Verhe´, R. De Buyck, L. Schamp, N. Synth.
Commun. 1975, 5, 269–274. (c) De Kimpe, N. Schamp, N. Verhe´, R. Synth.
Commun. 1975, 5, 403–408. (d) De Kimpe, N. Verhe´, R. De Buyck, L. Schamp,
N. J. Org. Chem. 1980, 45, 5319–5325. (e) De Kimpe, N. Sulmon, P. Verhe´, R.
De Buyck, L. Schamp, N. J. Org. Chem. 1983, 48, 4320–4326. (f) De Kimpe,
N. Moens, L. Tetrahedron 1990, 46, 2965–2974. (g) Denolf, B. Mangelinckx,
S. To¨rnroos, K. W. De Kimpe, N. Org. Lett. 2006, 8, 3129–3132(h) Reference
12b.
(22) (a) Matteson, D. S.; Sadhu, K. M. Tetrahedron Lett. 1986, 27, 795–
798. (b) Matteson, D. S.; Sadhu, K. M.; Peterson, M. L. J. Am. Chem. Soc.
1986, 108, 810–819. (c) Brown, H. C.; Gupta, A. K.; Rangaishenvi, M. V.; Vara
Prasad, J. V. N. Heterocycles 1989, 28, 283–294. (d) Brown, H. C.; Phadke,
A. S.; Bhat, N. G. Tetrahedron Lett. 1993, 34, 7845–7848. (e) Soundararajan,
R.; Li, G.; Brown, H. C. Tetrahedron Lett. 1994, 35, 8957–8960. (f) Soundarara-
jan, R.; Li, G.; Brown, H. C. Tetrahedron Lett. 1994, 35, 8961–8964.
(23) Onishi, T.; Hirose, N.; Takashi, N.; Masakazu, N.; Kunisuke, I.
Tetrahedron Lett. 2001, 42, 5883–5885.
J. Org. Chem. Vol. 74, No. 6, 2009 2453