Table 1. Screening of Reaction Conditionsa
entry
cat./mol %
additive
base
T (°C)
time (h)
conversionb (%)
1
2
3
4
5
6
7
8
[Rh(COD)Cl]2/5
[Rh(COD)Cl]2/5
[Rh(COD)Cl]2/2.5
[Rh(COD)Cl]2/1
[Rh(COD)Cl]2/2.5
[Rh(COD)Cl]2/2.5
[Rh(COD)Cl]2/5
[Rh(COD)Cl]2/2.5
[Rh(COD)Cl]2/2.5
[Rh(COD)Cl]2/2.5
[Rh(CO)2Cl]2/2.5
[Rh(CO)2Cl]2/5
Rh(COD)2BF4/2.5
Rh(COD)2BF4/5
RhCl(PPh3)3/5
[Rh(COD)Cl]2/2.5
Pd(OAc)2/2.5
MS
MS
MS
MS
MS
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
K3PO4
145
145
145
145
130
145
145
145
145
145
145
145
145
145
145
145
145
16
6
9
9
9
9
13
9
9
9
9
16
9
16
16
9
100 (92)c
>99 (93)c
>99 (92)c
85
90
70
97
>99
97
64
88
100
87
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
9
KF
K2CO3
10
11
12
13
14
15
16d
17e
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
98
8
10
0
9
a Conditions: 1, 0.5 mmol; 2a, 1.5 equiv; base, 2 equiv; MS ) 4A molecular sieves, 0.600 g; o-xylene, 3 mL. b Conversion of 1 determined by GC
analysis. c Isolated yield of 3a in parentheses. d 20 mol % of PPh3 was added. e 1,4-Benzoquinone (1.0 equiv) was added.
rings2c,19 were also reported for this purpose. Although a
variety of coupling partners were successfully explored, they
have been applied in C-H functionalization with limited
generality.1,20 Very recently, we reported Rh(I)-catalyzed
decarbonylative C-H functionalization by using acid chlo-
rides as the coupling partners.21 More recently, we found
that benzoic anhydrides, as the coupling partners for Rh(I)-
catalyzed aromatic C-H activation, are much more efficient
than their benzoyl chloride analogues. Anhydrides are usually
cheap and can be readily derived from their mother acids.
Carboxylic acids can be decarbonylatively transformed by
transition metals,22 but only scattered examples have been
documented.23 Herein, we report [Rh(COD)Cl]2-catalyzed
direct arylation and alkenylation of arene C-H bonds via
decarbonylation of benzoic and cinnamic anhydrides.
First, we carried out the reactions of benzo[h]quinoline
(1) with benzoic anhydride (2a) under the typical Rh(I)
catalysis conditions for decarbonylative arylation of 1 with
benzoyl chlorides.21 The [Rh(COD)Cl]2-catalyzed reaction
of 1 with 2a efficiently afforded the desired arylation product
3a in 92% isolated yield via decarbonylation of 2a (Table
1, entry 1). Within 6 h, the reaction was also complete to
give 3a in a decent yield (93%, entry 2), suggesting that the
present catalytic system is more efficient than that using
benzoyl chloride for the same purpose. Lowering the catalyst
amount to 2.5 mol %, the reaction also proceeded efficiently
(entry 3). Further lowering the catalyst to 1 mol % or
decreasing the reaction temperature to 130 °C (entries 4 and
(9) (a) Altman, R. A.; Hyde, A. M.; Huang, X. H.; Buchwald, S. L.
J. Am. Chem. Soc. 2008, 130, 9613. (b) Shi, Z. J.; He, C. J. Am. Chem.
Soc. 2004, 126, 13596
.
(10) For selected recent reports, see: (a) Wang, D.-H.; Wasa, M.; Giri,
R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190. (b) Shi, B.-F.; Maugel,
N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882. (c)
Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z. J. Angew.
Chem., Int. Ed. 2008, 47, 1473. (d) Vogler, T.; Studer, A. Org. Lett. 2008,
10, 129. (e) Shi, Z. J.; Li, B. J.; Wan, X. B.; Cheng, J.; Fang, Z.; Cao, B.;
Qin, C. M.; Wang, Y. Angew. Chem. Int Ed. 2007, 46, 5554
.
(11) (a) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130,
14092. (b) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2008, 130,
11876. (c) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.;
Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858. (d) Lewis, J. C.; Bergman,
R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332
.
(12) (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008,
130, 9254. (b) Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem., Int.
Ed. 2008, 47, 3004. (c) Cai, G. X.; Fu, Y.; Li, Y. Z.; Wan, X. B.; Shi, Z. J.
J. Am. Chem. Soc. 2007, 129, 7666. (d) Zaitsev, V. G.; Daugulis, O. J. Am.
(18) (a) Zhang, Y. H.; Feng, J. Q.; Li, C.-J. J. Am. Chem. Soc. 2008,
130, 2900. (b) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z. Y.; Chan,
A. S. C. J. Am. Chem. Soc. 2008, 130, 3304. (c) Xu, X. L.; Li, X. N.; Ma,
L.; Ye, N.; Weng, B. J. J. Am. Chem. Soc. 2008, 130, 14048. (d) Wetzel,
A.; Ehrhardt, V.; Heinrich, M. R. Angew. Chem., Int. Ed. 2008, 47, 9130.
(e) Li, Z. G.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc.
2007, 129, 12058. (f) Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K.
Angew. Chem., Int. Ed. 2007, 46, 6518. (g) Zhao, B. G.; Du, H. F.; Shi,
Y. A. J. Am. Chem. Soc. 2008, 130, 7220. (h) Shi, Z. J.; He, C. J. Am.
Chem. Soc. 2004, 126, 5964.
Chem. Soc. 2005, 127, 4156
.
(13) (a) Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Angew.
Chem. Int Ed. 2008, 47, 1301. (b) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z. J.
Angew. Chem., Int. Ed. 2008, 47, 1115. (c) Hull, K. L.; Sanford, M. S.
J. Am. Chem. Soc. 2007, 129, 11904
.
(14) Deng, G. J.; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47,
6278
.
(15) Yang, S. D.; Li, B. J.; Wan, X. B.; Shi, Z. J. J. Am. Chem. Soc.
2007, 129, 6066
.
(19) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.
(20) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc.
2008, 130, 13285.
(16) (a) Ge, H. B.; Niphakis, M. J.; Georg, G. I. J. Am. Chem. Soc.
2008, 130, 3708. (b) Kim, H.; MacMillan, D. W. C. J. Am. Chem. Soc.
2008, 130, 398. (c) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008,
(21) Zhao, X. D.; Yu, Z. K. J. Am. Chem. Soc. 2008, 130, 8136.
(22) (a) Goossen, L. J.; Goossen, K.; Rodrı´guez, N.; Blanchot, M.;
Linder, C.; Zimmermann, B. Pure Appl. Chem. 2008, 80, 1725.
47, 2109
.
(17) Oi, S.; Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439
.
1318
Org. Lett., Vol. 11, No. 6, 2009