Page 5 of 7
ACS Catalysis
344, 1037-1057; (c) Bini, L.; Müller, C.; Wilting, J.; von
Figure 2. (a) Δp (Pressure change compared to initial
1
2
3
4
5
6
7
8
Chrzanowski, L.; Spek, A. L.; Vogt, D., J. Am. Chem. Soc. 2007,
129, 12622-12623; (d) Enthaler, S.; Addis, D.; Junge, K.; Erre, G.;
Beller, M., Chem.–Eur. J. 2008, 14, 9491-9494; (e) Göthlich, A. P.
V.; Tensfeldt, M.; Rothfuss, H.; Tauchert, M. E.; Haap, D.;
Rominger, F.; Hofmann, P., Organometallics 2008, 27, 2189-2200;
(f) Reguillo, R.; Grellier, M.; Vautravers, N.; Vendier, L.; Sabo-
Etienne, S., J. Am. Chem. Soc. 2010, 132, 7854-7855; (g)
Bornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.;
Baumann, W.; Junge, H.; Junge, K.; Beller, M., Nat. Commun.
2014, 5, 4111.
pressure) curve and temperature curve. (b) Composition
of the reaction mixture.
CONCLUSIONS
In summary, we have developed a novel domino se-
quence for the conversion of internal olefins to linear
amines via catalytic water-gas shift reaction, subsequent
olefin isomerization, followed by hydroformylation and
reductive amination. Comparing with expensive rhodium
catalyst, as a less costly alternative metal, ruthenium also
demonstrates good reactivity and selectivity in this reac-
tion. More importantly, in the presence of a special imid-
azole ligand, the corresponding linear amines are ob-
tained in general in moderate to good yields and regios-
lectivity. Interestingly, the conversion of industrially
available bulk mixtures of olefins such as crack C4 and
octenes proceed in excellent yields considering the num-
ber of reaction steps. This procedure is expected to com-
plement the current methods for hydroaminomethylation
reactions in organic synthesis.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6. (a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L., Angew. Chem.
Int. Ed. 1995, 34, 1348-1350; (b) Wolfe, J. P.; Buchwald, S. L., J.
Org. Chem. 1996, 61, 1133-1135; (c) Hartwig, J. F., Angew. Chem.
Int. Ed. 1998, 37, 2046-2067; (d) Hartwig, J. F., Acc. Chem. Res.
1998, 31, 852-860; (e) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.;
Buchwald, S. L., Acc. Chem. Res. 1998, 31, 805-818; (f) Hartwig, J.
F., Nature 2008, 455, 314-322.
7. (a) Kaspar, L. T.; Fingerhut, B.; Ackermann, L., Angew. Chem.
Int. Ed. 2005, 44, 5972-5974; (b) Müller, T. E.; Hultzsch, K. C.;
Yus, M.; Foubelo, F.; Tada, M., Chem. Rev. 2008, 108, 3795-3892.
8. (a) Reppe, W.; Vetter, H., Justus Liebigs Annalen der Chemie
1953, 582, 133-161; (b) Laine, R. M., J. Org. Chem. 1980, 45, 3370-
3372; (c) Eilbracht, P.; Bärfacker, L.; Buss, C.; Hollmann, C.;
Kitsos-Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck,
R.; Schmidt, A., Chem. Rev. 1999, 99, 3329-3366; (d) Crozet, D.;
Urrutigoïty, M.; Kalck, P., ChemCatChem 2011, 3, 1102-1118; (e)
Raoufmoghaddam, S., Org. Biomol. Chem. 2014, 12, 7179-7193.
AUTHOR INFORMATION
Corresponding Author
*E-mail: matthias.beller@catalysis.de
Notes
The authors declare no competing financial interest.
9. (a) Ahmed, M.; Seayad, A. M.; Jackstell, R.; Beller, M., J. Am.
Chem. Soc. 2003, 125, 10311-10318; (b) Koç, F.; Wyszogrodzka, M.;
Eilbracht, P.; Haag, R., J. Org. Chem. 2005, 70, 2021-2025; (c)
Ahmed, M.; Buch, C.; Routaboul, L.; Jackstell, R.; Klein, H.;
Spannenberg, A.; Beller, M., Chem.–Eur. J. 2007, 13, 1594-1601; (d)
Vieira, T. O.; Alper, H., Chem. Commun. 2007, 2710-2711; (e)
Hamers, B.; Bäuerlein, P. S.; Müller, C.; Vogt, D., Adv. Synth.
Catal. 2008, 350, 332-342; (f) Vieira, T. O.; Alper, H., Org. Lett.
2008, 10, 485-487; (g) Hamers, B.; Kosciusko-Morizet, E.; Müller,
C.; Vogt, D., ChemCatChem 2009, 1, 103-106; (h) Subhani, M. A.;
Müller, K.-S.; Eilbracht, P., Adv. Synth. Catal. 2009, 351, 2113-2123;
(i) Kubiak, R.; Prochnow, I.; Doye, S., Angew. Chem. Int. Ed.
2010, 49, 2626-2629; (j) Liu, G.; Huang, K.; Cai, C.; Cao, B.;
Chang, M.; Wu, W.; Zhang, X., Chem.–Eur. J. 2011, 17, 14559-
14563; (k) Crozet, D.; Gual, A.; McKay, D.; Dinoi, C.; Godard, C.;
Urrutigoïty, M.; Daran, J.-C.; Maron, L.; Claver, C.; Kalck, P.,
Chem.–Eur. J. 2012, 18, 7128-7140; (l) Dong, K.; Fang, X.; Jackstell,
R.; Beller, M., Chem. Commun. 2015, 51, 5059-5062.
ACKNOWLEDGMENT
We are particularly grateful to the Bundesministerium für
Bildung und Forschung (BMBF) for financial support under
the PROFORMING project (BMBF-03X3559) and Evonik
Industries AG for providing the industrial raw materials: C4
mixture and octene mixture. J. Liu thanks the Chinese Schol-
arship Council for financial support. We thank the analytical
department of Leibniz-Institute for Catalysis at the Universi-
ty of Rostock for their excellent analytical service here.
REFERENCES
1. Amines Market by Amine Type - Global Trends and Forecast to
2020. By: marketsandmarkets.com, December, 2015.
2. Lawrence, S. A., Amines: Synthesis, Properties and Applica-
tions. Cambridge University Press: Cambridge, 2006, November.
10. Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.;
Beller, M., Science 2002, 297, 1676-1678.
3. (a) Müller, T. E.; Beller, M., Chem. Rev. 1998, 98, 675-704; (b)
Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M., Org. Lett. 2002,
4, 2055-2058; (c) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D.
W. C., J. Am. Chem. Soc. 2006, 128, 84-86; (d) Ricci, A., Modern
Amination Methods. Wiley-VCH: Weinheim, Germany, 2007; (e)
Lee, O.-Y.; Law, K.-L.; Yang, D., Org. Lett. 2009, 11, 3302-3305.
11. (a) van der Veen, L. A.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M., Angew. Chem. Int. Ed. 1999, 38, 336-338; (b) Selent, D.;
Wiese, K.-D.; Röttger, D.; Börner, A., Angew. Chem. Int. Ed.
2000, 39, 1639-1641; (c) Klein, H.; Jackstell, R.; Wiese, K.-D.;
Borgmann, C.; Beller, M., Angew. Chem. Int. Ed. 2001, 40, 3408-
3411; (d) Ahmed, M.; Bronger, R. P. J.; Jackstell, R.; Kamer, P. C.
J.; van Leeuwen, P. W. N. M.; Beller, M., Chem.–Eur. J. 2006, 12,
8979-8988; (e) Liu, G.; Huang, K.; Cao, B.; Chang, M.; Li, S.; Yu,
S.; Zhou, L.; Wu, W.; Zhang, X., Org. Lett. 2012, 14, 102-105.
4. (a) Trost, B., Science 1991, 254, 1471-1477; (b) Hamid, M. H. S.
A.; Slatford, P. A.; Williams, J. M. J., Adv. Synth. Catal. 2007, 349,
1555-1575; (c) Dobereiner, G. E.; Crabtree, R. H., Chem. Rev. 2010,
110, 681-703; (d) Guillena, G.; J. Ramón, D.; Yus, M., Chem. Rev.
2010, 110, 1611-1641; (e) Watson, A. J. A.; Williams, J. M. J., Science
2010, 329, 635-636; (f) Bähn, S.; Imm, S.; Neubert, L.; Zhang, M.;
Neumann, H.; Beller, M., ChemCatChem 2011, 3, 1853-1864; (g)
Gunanathan, C.; Milstein, D., Science 2013, 341, 1229712.
12. (a) Van Leeuwen, P. W. N. M.; Claver, C., Rhodium Catalyzed
Hydroformylation. Springer Netherlands: 2002; Vol. 22; (b)
Franke, R.; Selent, D.; Börner, A., Chem. Rev. 2012, 112, 5675-5732.
13. Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M.,
Angew. Chem. Int. Ed. 2013, 52, 2852-2872.
5. (a) Nishimura, S., Handbook of Heterogeneous Catalytic Hy-
drogenation for Organic Synthesis. John Wiley & Sons: 2001; (b)
Gomez, S.; Peters, J. A.; Maschmeyer, T., Adv. Synth. Catal. 2002,
ACS Paragon Plus Environment